- /* Support routines for decoding "stabs" debugging information format.
- Copyright (C) 1986-2015 Free Software Foundation, Inc.
- This file is part of GDB.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
- /* Support routines for reading and decoding debugging information in
- the "stabs" format. This format is used with many systems that use
- the a.out object file format, as well as some systems that use
- COFF or ELF where the stabs data is placed in a special section.
- Avoid placing any object file format specific code in this file. */
- #include "defs.h"
- #include "bfd.h"
- #include "gdb_obstack.h"
- #include "symtab.h"
- #include "gdbtypes.h"
- #include "expression.h"
- #include "symfile.h"
- #include "objfiles.h"
- #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
- #include "libaout.h"
- #include "aout/aout64.h"
- #include "gdb-stabs.h"
- #include "buildsym.h"
- #include "complaints.h"
- #include "demangle.h"
- #include "gdb-demangle.h"
- #include "language.h"
- #include "doublest.h"
- #include "cp-abi.h"
- #include "cp-support.h"
- #include <ctype.h>
- /* Ask stabsread.h to define the vars it normally declares `extern'. */
- #define EXTERN
- /**/
- #include "stabsread.h" /* Our own declarations */
- #undef EXTERN
- extern void _initialize_stabsread (void);
- /* The routines that read and process a complete stabs for a C struct or
- C++ class pass lists of data member fields and lists of member function
- fields in an instance of a field_info structure, as defined below.
- This is part of some reorganization of low level C++ support and is
- expected to eventually go away... (FIXME) */
- struct field_info
- {
- struct nextfield
- {
- struct nextfield *next;
- /* This is the raw visibility from the stab. It is not checked
- for being one of the visibilities we recognize, so code which
- examines this field better be able to deal. */
- int visibility;
- struct field field;
- }
- *list;
- struct next_fnfieldlist
- {
- struct next_fnfieldlist *next;
- struct fn_fieldlist fn_fieldlist;
- }
- *fnlist;
- };
- static void
- read_one_struct_field (struct field_info *, char **, char *,
- struct type *, struct objfile *);
- static struct type *dbx_alloc_type (int[2], struct objfile *);
- static long read_huge_number (char **, int, int *, int);
- static struct type *error_type (char **, struct objfile *);
- static void
- patch_block_stabs (struct pending *, struct pending_stabs *,
- struct objfile *);
- static void fix_common_block (struct symbol *, CORE_ADDR);
- static int read_type_number (char **, int *);
- static struct type *read_type (char **, struct objfile *);
- static struct type *read_range_type (char **, int[2], int, struct objfile *);
- static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
- static struct type *read_sun_floating_type (char **, int[2],
- struct objfile *);
- static struct type *read_enum_type (char **, struct type *, struct objfile *);
- static struct type *rs6000_builtin_type (int, struct objfile *);
- static int
- read_member_functions (struct field_info *, char **, struct type *,
- struct objfile *);
- static int
- read_struct_fields (struct field_info *, char **, struct type *,
- struct objfile *);
- static int
- read_baseclasses (struct field_info *, char **, struct type *,
- struct objfile *);
- static int
- read_tilde_fields (struct field_info *, char **, struct type *,
- struct objfile *);
- static int attach_fn_fields_to_type (struct field_info *, struct type *);
- static int attach_fields_to_type (struct field_info *, struct type *,
- struct objfile *);
- static struct type *read_struct_type (char **, struct type *,
- enum type_code,
- struct objfile *);
- static struct type *read_array_type (char **, struct type *,
- struct objfile *);
- static struct field *read_args (char **, int, struct objfile *, int *, int *);
- static void add_undefined_type (struct type *, int[2]);
- static int
- read_cpp_abbrev (struct field_info *, char **, struct type *,
- struct objfile *);
- static char *find_name_end (char *name);
- static int process_reference (char **string);
- void stabsread_clear_cache (void);
- static const char vptr_name[] = "_vptr$";
- static const char vb_name[] = "_vb$";
- static void
- invalid_cpp_abbrev_complaint (const char *arg1)
- {
- complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
- }
- static void
- reg_value_complaint (int regnum, int num_regs, const char *sym)
- {
- complaint (&symfile_complaints,
- _("register number %d too large (max %d) in symbol %s"),
- regnum, num_regs - 1, sym);
- }
- static void
- stabs_general_complaint (const char *arg1)
- {
- complaint (&symfile_complaints, "%s", arg1);
- }
- /* Make a list of forward references which haven't been defined. */
- static struct type **undef_types;
- static int undef_types_allocated;
- static int undef_types_length;
- static struct symbol *current_symbol = NULL;
- /* Make a list of nameless types that are undefined.
- This happens when another type is referenced by its number
- before this type is actually defined. For instance "t(0,1)=k(0,2)"
- and type (0,2) is defined only later. */
- struct nat
- {
- int typenums[2];
- struct type *type;
- };
- static struct nat *noname_undefs;
- static int noname_undefs_allocated;
- static int noname_undefs_length;
- /* Check for and handle cretinous stabs symbol name continuation! */
- #define STABS_CONTINUE(pp,objfile) \
- do { \
- if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
- *(pp) = next_symbol_text (objfile); \
- } while (0)
- /* Vector of types defined so far, indexed by their type numbers.
- (In newer sun systems, dbx uses a pair of numbers in parens,
- as in "(SUBFILENUM,NUMWITHINSUBFILE)".
- Then these numbers must be translated through the type_translations
- hash table to get the index into the type vector.) */
- static struct type **type_vector;
- /* Number of elements allocated for type_vector currently. */
- static int type_vector_length;
- /* Initial size of type vector. Is realloc'd larger if needed, and
- realloc'd down to the size actually used, when completed. */
- #define INITIAL_TYPE_VECTOR_LENGTH 160
- /* Look up a dbx type-number pair. Return the address of the slot
- where the type for that number-pair is stored.
- The number-pair is in TYPENUMS.
- This can be used for finding the type associated with that pair
- or for associating a new type with the pair. */
- static struct type **
- dbx_lookup_type (int typenums[2], struct objfile *objfile)
- {
- int filenum = typenums[0];
- int index = typenums[1];
- unsigned old_len;
- int real_filenum;
- struct header_file *f;
- int f_orig_length;
- if (filenum == -1) /* -1,-1 is for temporary types. */
- return 0;
- if (filenum < 0 || filenum >= n_this_object_header_files)
- {
- complaint (&symfile_complaints,
- _("Invalid symbol data: type number "
- "(%d,%d) out of range at symtab pos %d."),
- filenum, index, symnum);
- goto error_return;
- }
- if (filenum == 0)
- {
- if (index < 0)
- {
- /* Caller wants address of address of type. We think
- that negative (rs6k builtin) types will never appear as
- "lvalues", (nor should they), so we stuff the real type
- pointer into a temp, and return its address. If referenced,
- this will do the right thing. */
- static struct type *temp_type;
- temp_type = rs6000_builtin_type (index, objfile);
- return &temp_type;
- }
- /* Type is defined outside of header files.
- Find it in this object file's type vector. */
- if (index >= type_vector_length)
- {
- old_len = type_vector_length;
- if (old_len == 0)
- {
- type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
- type_vector = (struct type **)
- xmalloc (type_vector_length * sizeof (struct type *));
- }
- while (index >= type_vector_length)
- {
- type_vector_length *= 2;
- }
- type_vector = (struct type **)
- xrealloc ((char *) type_vector,
- (type_vector_length * sizeof (struct type *)));
- memset (&type_vector[old_len], 0,
- (type_vector_length - old_len) * sizeof (struct type *));
- }
- return (&type_vector[index]);
- }
- else
- {
- real_filenum = this_object_header_files[filenum];
- if (real_filenum >= N_HEADER_FILES (objfile))
- {
- static struct type *temp_type;
- warning (_("GDB internal error: bad real_filenum"));
- error_return:
- temp_type = objfile_type (objfile)->builtin_error;
- return &temp_type;
- }
- f = HEADER_FILES (objfile) + real_filenum;
- f_orig_length = f->length;
- if (index >= f_orig_length)
- {
- while (index >= f->length)
- {
- f->length *= 2;
- }
- f->vector = (struct type **)
- xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
- memset (&f->vector[f_orig_length], 0,
- (f->length - f_orig_length) * sizeof (struct type *));
- }
- return (&f->vector[index]);
- }
- }
- /* Make sure there is a type allocated for type numbers TYPENUMS
- and return the type object.
- This can create an empty (zeroed) type object.
- TYPENUMS may be (-1, -1) to return a new type object that is not
- put into the type vector, and so may not be referred to by number. */
- static struct type *
- dbx_alloc_type (int typenums[2], struct objfile *objfile)
- {
- struct type **type_addr;
- if (typenums[0] == -1)
- {
- return (alloc_type (objfile));
- }
- type_addr = dbx_lookup_type (typenums, objfile);
- /* If we are referring to a type not known at all yet,
- allocate an empty type for it.
- We will fill it in later if we find out how. */
- if (*type_addr == 0)
- {
- *type_addr = alloc_type (objfile);
- }
- return (*type_addr);
- }
- /* for all the stabs in a given stab vector, build appropriate types
- and fix their symbols in given symbol vector. */
- static void
- patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
- struct objfile *objfile)
- {
- int ii;
- char *name;
- char *pp;
- struct symbol *sym;
- if (stabs)
- {
- /* for all the stab entries, find their corresponding symbols and
- patch their types! */
- for (ii = 0; ii < stabs->count; ++ii)
- {
- name = stabs->stab[ii];
- pp = (char *) strchr (name, ':');
- gdb_assert (pp); /* Must find a ':' or game's over. */
- while (pp[1] == ':')
- {
- pp += 2;
- pp = (char *) strchr (pp, ':');
- }
- sym = find_symbol_in_list (symbols, name, pp - name);
- if (!sym)
- {
- /* FIXME-maybe: it would be nice if we noticed whether
- the variable was defined *anywhere*, not just whether
- it is defined in this compilation unit. But neither
- xlc or GCC seem to need such a definition, and until
- we do psymtabs (so that the minimal symbols from all
- compilation units are available now), I'm not sure
- how to get the information. */
- /* On xcoff, if a global is defined and never referenced,
- ld will remove it from the executable. There is then
- a N_GSYM stab for it, but no regular (C_EXT) symbol. */
- sym = allocate_symbol (objfile);
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
- SYMBOL_SET_LINKAGE_NAME
- (sym, obstack_copy0 (&objfile->objfile_obstack,
- name, pp - name));
- pp += 2;
- if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
- {
- /* I don't think the linker does this with functions,
- so as far as I know this is never executed.
- But it doesn't hurt to check. */
- SYMBOL_TYPE (sym) =
- lookup_function_type (read_type (&pp, objfile));
- }
- else
- {
- SYMBOL_TYPE (sym) = read_type (&pp, objfile);
- }
- add_symbol_to_list (sym, &global_symbols);
- }
- else
- {
- pp += 2;
- if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
- {
- SYMBOL_TYPE (sym) =
- lookup_function_type (read_type (&pp, objfile));
- }
- else
- {
- SYMBOL_TYPE (sym) = read_type (&pp, objfile);
- }
- }
- }
- }
- }
- /* Read a number by which a type is referred to in dbx data,
- or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
- Just a single number N is equivalent to (0,N).
- Return the two numbers by storing them in the vector TYPENUMS.
- TYPENUMS will then be used as an argument to dbx_lookup_type.
- Returns 0 for success, -1 for error. */
- static int
- read_type_number (char **pp, int *typenums)
- {
- int nbits;
- if (**pp == '(')
- {
- (*pp)++;
- typenums[0] = read_huge_number (pp, ',', &nbits, 0);
- if (nbits != 0)
- return -1;
- typenums[1] = read_huge_number (pp, ')', &nbits, 0);
- if (nbits != 0)
- return -1;
- }
- else
- {
- typenums[0] = 0;
- typenums[1] = read_huge_number (pp, 0, &nbits, 0);
- if (nbits != 0)
- return -1;
- }
- return 0;
- }
- #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
- #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
- #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
- #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
- /* Structure for storing pointers to reference definitions for fast lookup
- during "process_later". */
- struct ref_map
- {
- char *stabs;
- CORE_ADDR value;
- struct symbol *sym;
- };
- #define MAX_CHUNK_REFS 100
- #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
- #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
- static struct ref_map *ref_map;
- /* Ptr to free cell in chunk's linked list. */
- static int ref_count = 0;
- /* Number of chunks malloced. */
- static int ref_chunk = 0;
- /* This file maintains a cache of stabs aliases found in the symbol
- table. If the symbol table changes, this cache must be cleared
- or we are left holding onto data in invalid obstacks. */
- void
- stabsread_clear_cache (void)
- {
- ref_count = 0;
- ref_chunk = 0;
- }
- /* Create array of pointers mapping refids to symbols and stab strings.
- Add pointers to reference definition symbols and/or their values as we
- find them, using their reference numbers as our index.
- These will be used later when we resolve references. */
- void
- ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
- {
- if (ref_count == 0)
- ref_chunk = 0;
- if (refnum >= ref_count)
- ref_count = refnum + 1;
- if (ref_count > ref_chunk * MAX_CHUNK_REFS)
- {
- int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
- int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
- ref_map = (struct ref_map *)
- xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
- memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
- new_chunks * REF_CHUNK_SIZE);
- ref_chunk += new_chunks;
- }
- ref_map[refnum].stabs = stabs;
- ref_map[refnum].sym = sym;
- ref_map[refnum].value = value;
- }
- /* Return defined sym for the reference REFNUM. */
- struct symbol *
- ref_search (int refnum)
- {
- if (refnum < 0 || refnum > ref_count)
- return 0;
- return ref_map[refnum].sym;
- }
- /* Parse a reference id in STRING and return the resulting
- reference number. Move STRING beyond the reference id. */
- static int
- process_reference (char **string)
- {
- char *p;
- int refnum = 0;
- if (**string != '#')
- return 0;
- /* Advance beyond the initial '#'. */
- p = *string + 1;
- /* Read number as reference id. */
- while (*p && isdigit (*p))
- {
- refnum = refnum * 10 + *p - '0';
- p++;
- }
- *string = p;
- return refnum;
- }
- /* If STRING defines a reference, store away a pointer to the reference
- definition for later use. Return the reference number. */
- int
- symbol_reference_defined (char **string)
- {
- char *p = *string;
- int refnum = 0;
- refnum = process_reference (&p);
- /* Defining symbols end in '='. */
- if (*p == '=')
- {
- /* Symbol is being defined here. */
- *string = p + 1;
- return refnum;
- }
- else
- {
- /* Must be a reference. Either the symbol has already been defined,
- or this is a forward reference to it. */
- *string = p;
- return -1;
- }
- }
- static int
- stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
- {
- int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
- if (regno >= gdbarch_num_regs (gdbarch)
- + gdbarch_num_pseudo_regs (gdbarch))
- {
- reg_value_complaint (regno,
- gdbarch_num_regs (gdbarch)
- + gdbarch_num_pseudo_regs (gdbarch),
- SYMBOL_PRINT_NAME (sym));
- regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
- }
- return regno;
- }
- static const struct symbol_register_ops stab_register_funcs = {
- stab_reg_to_regnum
- };
- /* The "aclass" indices for computed symbols. */
- static int stab_register_index;
- static int stab_regparm_index;
- struct symbol *
- define_symbol (CORE_ADDR valu, char *string, int desc, int type,
- struct objfile *objfile)
- {
- struct gdbarch *gdbarch = get_objfile_arch (objfile);
- struct symbol *sym;
- char *p = (char *) find_name_end (string);
- int deftype;
- int synonym = 0;
- int i;
- char *new_name = NULL;
- /* We would like to eliminate nameless symbols, but keep their types.
- E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
- to type 2, but, should not create a symbol to address that type. Since
- the symbol will be nameless, there is no way any user can refer to it. */
- int nameless;
- /* Ignore syms with empty names. */
- if (string[0] == 0)
- return 0;
- /* Ignore old-style symbols from cc -go. */
- if (p == 0)
- return 0;
- while (p[1] == ':')
- {
- p += 2;
- p = strchr (p, ':');
- if (p == NULL)
- {
- complaint (&symfile_complaints,
- _("Bad stabs string '%s'"), string);
- return NULL;
- }
- }
- /* If a nameless stab entry, all we need is the type, not the symbol.
- e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
- nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
- current_symbol = sym = allocate_symbol (objfile);
- if (processing_gcc_compilation)
- {
- /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
- number of bytes occupied by a type or object, which we ignore. */
- SYMBOL_LINE (sym) = desc;
- }
- else
- {
- SYMBOL_LINE (sym) = 0; /* unknown */
- }
- SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
- &objfile->objfile_obstack);
- if (is_cplus_marker (string[0]))
- {
- /* Special GNU C++ names. */
- switch (string[1])
- {
- case 't':
- SYMBOL_SET_LINKAGE_NAME (sym, "this");
- break;
- case 'v': /* $vtbl_ptr_type */
- goto normal;
- case 'e':
- SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
- break;
- case '_':
- /* This was an anonymous type that was never fixed up. */
- goto normal;
- case 'X':
- /* SunPRO (3.0 at least) static variable encoding. */
- if (gdbarch_static_transform_name_p (gdbarch))
- goto normal;
- /* ... fall through ... */
- default:
- complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
- string);
- goto normal; /* Do *something* with it. */
- }
- }
- else
- {
- normal:
- if (SYMBOL_LANGUAGE (sym) == language_cplus)
- {
- char *name = alloca (p - string + 1);
- memcpy (name, string, p - string);
- name[p - string] = '\0';
- new_name = cp_canonicalize_string (name);
- }
- if (new_name != NULL)
- {
- SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
- xfree (new_name);
- }
- else
- SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
- if (SYMBOL_LANGUAGE (sym) == language_cplus)
- cp_scan_for_anonymous_namespaces (sym, objfile);
- }
- p++;
- /* Determine the type of name being defined. */
- #if 0
- /* Getting GDB to correctly skip the symbol on an undefined symbol
- descriptor and not ever dump core is a very dodgy proposition if
- we do things this way. I say the acorn RISC machine can just
- fix their compiler. */
- /* The Acorn RISC machine's compiler can put out locals that don't
- start with "234=" or "(3,4)=", so assume anything other than the
- deftypes we know how to handle is a local. */
- if (!strchr ("cfFGpPrStTvVXCR", *p))
- #else
- if (isdigit (*p) || *p == '(' || *p == '-')
- #endif
- deftype = 'l';
- else
- deftype = *p++;
- switch (deftype)
- {
- case 'c':
- /* c is a special case, not followed by a type-number.
- SYMBOL:c=iVALUE for an integer constant symbol.
- SYMBOL:c=rVALUE for a floating constant symbol.
- SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
- e.g. "b:c=e6,0" for "const b = blob1"
- (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
- if (*p != '=')
- {
- SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
- SYMBOL_TYPE (sym) = error_type (&p, objfile);
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &file_symbols);
- return sym;
- }
- ++p;
- switch (*p++)
- {
- case 'r':
- {
- double d = atof (p);
- gdb_byte *dbl_valu;
- struct type *dbl_type;
- /* FIXME-if-picky-about-floating-accuracy: Should be using
- target arithmetic to get the value. real.c in GCC
- probably has the necessary code. */
- dbl_type = objfile_type (objfile)->builtin_double;
- dbl_valu =
- obstack_alloc (&objfile->objfile_obstack,
- TYPE_LENGTH (dbl_type));
- store_typed_floating (dbl_valu, dbl_type, d);
- SYMBOL_TYPE (sym) = dbl_type;
- SYMBOL_VALUE_BYTES (sym) = dbl_valu;
- SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
- }
- break;
- case 'i':
- {
- /* Defining integer constants this way is kind of silly,
- since 'e' constants allows the compiler to give not
- only the value, but the type as well. C has at least
- int, long, unsigned int, and long long as constant
- types; other languages probably should have at least
- unsigned as well as signed constants. */
- SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
- SYMBOL_VALUE (sym) = atoi (p);
- SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
- }
- break;
- case 'c':
- {
- SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
- SYMBOL_VALUE (sym) = atoi (p);
- SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
- }
- break;
- case 's':
- {
- struct type *range_type;
- int ind = 0;
- char quote = *p++;
- gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
- gdb_byte *string_value;
- if (quote != '\'' && quote != '"')
- {
- SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
- SYMBOL_TYPE (sym) = error_type (&p, objfile);
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &file_symbols);
- return sym;
- }
- /* Find matching quote, rejecting escaped quotes. */
- while (*p && *p != quote)
- {
- if (*p == '\\' && p[1] == quote)
- {
- string_local[ind] = (gdb_byte) quote;
- ind++;
- p += 2;
- }
- else if (*p)
- {
- string_local[ind] = (gdb_byte) (*p);
- ind++;
- p++;
- }
- }
- if (*p != quote)
- {
- SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
- SYMBOL_TYPE (sym) = error_type (&p, objfile);
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &file_symbols);
- return sym;
- }
- /* NULL terminate the string. */
- string_local[ind] = 0;
- range_type
- = create_static_range_type (NULL,
- objfile_type (objfile)->builtin_int,
- 0, ind);
- SYMBOL_TYPE (sym) = create_array_type (NULL,
- objfile_type (objfile)->builtin_char,
- range_type);
- string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
- memcpy (string_value, string_local, ind + 1);
- p++;
- SYMBOL_VALUE_BYTES (sym) = string_value;
- SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
- }
- break;
- case 'e':
- /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
- can be represented as integral.
- e.g. "b:c=e6,0" for "const b = blob1"
- (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
- {
- SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- if (*p != ',')
- {
- SYMBOL_TYPE (sym) = error_type (&p, objfile);
- break;
- }
- ++p;
- /* If the value is too big to fit in an int (perhaps because
- it is unsigned), or something like that, we silently get
- a bogus value. The type and everything else about it is
- correct. Ideally, we should be using whatever we have
- available for parsing unsigned and long long values,
- however. */
- SYMBOL_VALUE (sym) = atoi (p);
- }
- break;
- default:
- {
- SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
- SYMBOL_TYPE (sym) = error_type (&p, objfile);
- }
- }
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &file_symbols);
- return sym;
- case 'C':
- /* The name of a caught exception. */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- SYMBOL_VALUE_ADDRESS (sym) = valu;
- add_symbol_to_list (sym, &local_symbols);
- break;
- case 'f':
- /* A static function definition. */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &file_symbols);
- /* fall into process_function_types. */
- process_function_types:
- /* Function result types are described as the result type in stabs.
- We need to convert this to the function-returning-type-X type
- in GDB. E.g. "int" is converted to "function returning int". */
- if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
- SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
- /* All functions in C++ have prototypes. Stabs does not offer an
- explicit way to identify prototyped or unprototyped functions,
- but both GCC and Sun CC emit stabs for the "call-as" type rather
- than the "declared-as" type for unprototyped functions, so
- we treat all functions as if they were prototyped. This is used
- primarily for promotion when calling the function from GDB. */
- TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
- /* fall into process_prototype_types. */
- process_prototype_types:
- /* Sun acc puts declared types of arguments here. */
- if (*p == ';')
- {
- struct type *ftype = SYMBOL_TYPE (sym);
- int nsemi = 0;
- int nparams = 0;
- char *p1 = p;
- /* Obtain a worst case guess for the number of arguments
- by counting the semicolons. */
- while (*p1)
- {
- if (*p1++ == ';')
- nsemi++;
- }
- /* Allocate parameter information fields and fill them in. */
- TYPE_FIELDS (ftype) = (struct field *)
- TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
- while (*p++ == ';')
- {
- struct type *ptype;
- /* A type number of zero indicates the start of varargs.
- FIXME: GDB currently ignores vararg functions. */
- if (p[0] == '0' && p[1] == '\0')
- break;
- ptype = read_type (&p, objfile);
- /* The Sun compilers mark integer arguments, which should
- be promoted to the width of the calling conventions, with
- a type which references itself. This type is turned into
- a TYPE_CODE_VOID type by read_type, and we have to turn
- it back into builtin_int here.
- FIXME: Do we need a new builtin_promoted_int_arg ? */
- if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
- ptype = objfile_type (objfile)->builtin_int;
- TYPE_FIELD_TYPE (ftype, nparams) = ptype;
- TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
- }
- TYPE_NFIELDS (ftype) = nparams;
- TYPE_PROTOTYPED (ftype) = 1;
- }
- break;
- case 'F':
- /* A global function definition. */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &global_symbols);
- goto process_function_types;
- case 'G':
- /* For a class G (global) symbol, it appears that the
- value is not correct. It is necessary to search for the
- corresponding linker definition to find the value.
- These definitions appear at the end of the namelist. */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- /* Don't add symbol references to global_sym_chain.
- Symbol references don't have valid names and wont't match up with
- minimal symbols when the global_sym_chain is relocated.
- We'll fixup symbol references when we fixup the defining symbol. */
- if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
- {
- i = hashname (SYMBOL_LINKAGE_NAME (sym));
- SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
- global_sym_chain[i] = sym;
- }
- add_symbol_to_list (sym, &global_symbols);
- break;
- /* This case is faked by a conditional above,
- when there is no code letter in the dbx data.
- Dbx data never actually contains 'l'. */
- case 's':
- case 'l':
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
- SYMBOL_VALUE (sym) = valu;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &local_symbols);
- break;
- case 'p':
- if (*p == 'F')
- /* pF is a two-letter code that means a function parameter in Fortran.
- The type-number specifies the type of the return value.
- Translate it into a pointer-to-function type. */
- {
- p++;
- SYMBOL_TYPE (sym)
- = lookup_pointer_type
- (lookup_function_type (read_type (&p, objfile)));
- }
- else
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
- SYMBOL_VALUE (sym) = valu;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- SYMBOL_IS_ARGUMENT (sym) = 1;
- add_symbol_to_list (sym, &local_symbols);
- if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
- {
- /* On little-endian machines, this crud is never necessary,
- and, if the extra bytes contain garbage, is harmful. */
- break;
- }
- /* If it's gcc-compiled, if it says `short', believe it. */
- if (processing_gcc_compilation
- || gdbarch_believe_pcc_promotion (gdbarch))
- break;
- if (!gdbarch_believe_pcc_promotion (gdbarch))
- {
- /* If PCC says a parameter is a short or a char, it is
- really an int. */
- if (TYPE_LENGTH (SYMBOL_TYPE (sym))
- < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
- && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
- {
- SYMBOL_TYPE (sym) =
- TYPE_UNSIGNED (SYMBOL_TYPE (sym))
- ? objfile_type (objfile)->builtin_unsigned_int
- : objfile_type (objfile)->builtin_int;
- }
- break;
- }
- case 'P':
- /* acc seems to use P to declare the prototypes of functions that
- are referenced by this file. gdb is not prepared to deal
- with this extra information. FIXME, it ought to. */
- if (type == N_FUN)
- {
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- goto process_prototype_types;
- }
- /*FALLTHROUGH */
- case 'R':
- /* Parameter which is in a register. */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
- SYMBOL_IS_ARGUMENT (sym) = 1;
- SYMBOL_VALUE (sym) = valu;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &local_symbols);
- break;
- case 'r':
- /* Register variable (either global or local). */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
- SYMBOL_VALUE (sym) = valu;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- if (within_function)
- {
- /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
- the same name to represent an argument passed in a
- register. GCC uses 'P' for the same case. So if we find
- such a symbol pair we combine it into one 'P' symbol.
- For Sun cc we need to do this regardless of
- stabs_argument_has_addr, because the compiler puts out
- the 'p' symbol even if it never saves the argument onto
- the stack.
- On most machines, we want to preserve both symbols, so
- that we can still get information about what is going on
- with the stack (VAX for computing args_printed, using
- stack slots instead of saved registers in backtraces,
- etc.).
- Note that this code illegally combines
- main(argc) struct foo argc; { register struct foo argc; }
- but this case is considered pathological and causes a warning
- from a decent compiler. */
- if (local_symbols
- && local_symbols->nsyms > 0
- && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
- {
- struct symbol *prev_sym;
- prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
- if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
- || SYMBOL_CLASS (prev_sym) == LOC_ARG)
- && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
- SYMBOL_LINKAGE_NAME (sym)) == 0)
- {
- SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
- /* Use the type from the LOC_REGISTER; that is the type
- that is actually in that register. */
- SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
- SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
- sym = prev_sym;
- break;
- }
- }
- add_symbol_to_list (sym, &local_symbols);
- }
- else
- add_symbol_to_list (sym, &file_symbols);
- break;
- case 'S':
- /* Static symbol at top level of file. */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
- SYMBOL_VALUE_ADDRESS (sym) = valu;
- if (gdbarch_static_transform_name_p (gdbarch)
- && gdbarch_static_transform_name (gdbarch,
- SYMBOL_LINKAGE_NAME (sym))
- != SYMBOL_LINKAGE_NAME (sym))
- {
- struct bound_minimal_symbol msym;
- msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
- NULL, objfile);
- if (msym.minsym != NULL)
- {
- const char *new_name = gdbarch_static_transform_name
- (gdbarch, SYMBOL_LINKAGE_NAME (sym));
- SYMBOL_SET_LINKAGE_NAME (sym, new_name);
- SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
- }
- }
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &file_symbols);
- break;
- case 't':
- /* In Ada, there is no distinction between typedef and non-typedef;
- any type declaration implicitly has the equivalent of a typedef,
- and thus 't' is in fact equivalent to 'Tt'.
- Therefore, for Ada units, we check the character immediately
- before the 't', and if we do not find a 'T', then make sure to
- create the associated symbol in the STRUCT_DOMAIN ('t' definitions
- will be stored in the VAR_DOMAIN). If the symbol was indeed
- defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
- elsewhere, so we don't need to take care of that.
- This is important to do, because of forward references:
- The cleanup of undefined types stored in undef_types only uses
- STRUCT_DOMAIN symbols to perform the replacement. */
- synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
- /* Typedef */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- /* For a nameless type, we don't want a create a symbol, thus we
- did not use `sym'. Return without further processing. */
- if (nameless)
- return NULL;
- SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
- SYMBOL_VALUE (sym) = valu;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- /* C++ vagaries: we may have a type which is derived from
- a base type which did not have its name defined when the
- derived class was output. We fill in the derived class's
- base part member's name here in that case. */
- if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
- if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
- || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
- && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
- {
- int j;
- for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
- if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
- TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
- type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
- }
- if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
- {
- /* gcc-2.6 or later (when using -fvtable-thunks)
- emits a unique named type for a vtable entry.
- Some gdb code depends on that specific name. */
- extern const char vtbl_ptr_name[];
- if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
- && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
- || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
- {
- /* If we are giving a name to a type such as "pointer to
- foo" or "function returning foo", we better not set
- the TYPE_NAME. If the program contains "typedef char
- *caddr_t;", we don't want all variables of type char
- * to print as caddr_t. This is not just a
- consequence of GDB's type management; PCC and GCC (at
- least through version 2.4) both output variables of
- either type char * or caddr_t with the type number
- defined in the 't' symbol for caddr_t. If a future
- compiler cleans this up it GDB is not ready for it
- yet, but if it becomes ready we somehow need to
- disable this check (without breaking the PCC/GCC2.4
- case).
- Sigh.
- Fortunately, this check seems not to be necessary
- for anything except pointers or functions. */
- /* ezannoni: 2000-10-26. This seems to apply for
- versions of gcc older than 2.8. This was the original
- problem: with the following code gdb would tell that
- the type for name1 is caddr_t, and func is char().
- typedef char *caddr_t;
- char *name2;
- struct x
- {
- char *name1;
- } xx;
- char *func()
- {
- }
- main () {}
- */
- /* Pascal accepts names for pointer types. */
- if (current_subfile->language == language_pascal)
- {
- TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
- }
- }
- else
- TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
- }
- add_symbol_to_list (sym, &file_symbols);
- if (synonym)
- {
- /* Create the STRUCT_DOMAIN clone. */
- struct symbol *struct_sym = allocate_symbol (objfile);
- *struct_sym = *sym;
- SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
- SYMBOL_VALUE (struct_sym) = valu;
- SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
- if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
- TYPE_NAME (SYMBOL_TYPE (sym))
- = obconcat (&objfile->objfile_obstack,
- SYMBOL_LINKAGE_NAME (sym),
- (char *) NULL);
- add_symbol_to_list (struct_sym, &file_symbols);
- }
- break;
- case 'T':
- /* Struct, union, or enum tag. For GNU C++, this can be be followed
- by 't' which means we are typedef'ing it as well. */
- synonym = *p == 't';
- if (synonym)
- p++;
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- /* For a nameless type, we don't want a create a symbol, thus we
- did not use `sym'. Return without further processing. */
- if (nameless)
- return NULL;
- SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
- SYMBOL_VALUE (sym) = valu;
- SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
- if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
- TYPE_TAG_NAME (SYMBOL_TYPE (sym))
- = obconcat (&objfile->objfile_obstack,
- SYMBOL_LINKAGE_NAME (sym),
- (char *) NULL);
- add_symbol_to_list (sym, &file_symbols);
- if (synonym)
- {
- /* Clone the sym and then modify it. */
- struct symbol *typedef_sym = allocate_symbol (objfile);
- *typedef_sym = *sym;
- SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
- SYMBOL_VALUE (typedef_sym) = valu;
- SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
- if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
- TYPE_NAME (SYMBOL_TYPE (sym))
- = obconcat (&objfile->objfile_obstack,
- SYMBOL_LINKAGE_NAME (sym),
- (char *) NULL);
- add_symbol_to_list (typedef_sym, &file_symbols);
- }
- break;
- case 'V':
- /* Static symbol of local scope. */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
- SYMBOL_VALUE_ADDRESS (sym) = valu;
- if (gdbarch_static_transform_name_p (gdbarch)
- && gdbarch_static_transform_name (gdbarch,
- SYMBOL_LINKAGE_NAME (sym))
- != SYMBOL_LINKAGE_NAME (sym))
- {
- struct bound_minimal_symbol msym;
- msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
- NULL, objfile);
- if (msym.minsym != NULL)
- {
- const char *new_name = gdbarch_static_transform_name
- (gdbarch, SYMBOL_LINKAGE_NAME (sym));
- SYMBOL_SET_LINKAGE_NAME (sym, new_name);
- SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
- }
- }
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &local_symbols);
- break;
- case 'v':
- /* Reference parameter */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
- SYMBOL_IS_ARGUMENT (sym) = 1;
- SYMBOL_VALUE (sym) = valu;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &local_symbols);
- break;
- case 'a':
- /* Reference parameter which is in a register. */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
- SYMBOL_IS_ARGUMENT (sym) = 1;
- SYMBOL_VALUE (sym) = valu;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &local_symbols);
- break;
- case 'X':
- /* This is used by Sun FORTRAN for "function result value".
- Sun claims ("dbx and dbxtool interfaces", 2nd ed)
- that Pascal uses it too, but when I tried it Pascal used
- "x:3" (local symbol) instead. */
- SYMBOL_TYPE (sym) = read_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
- SYMBOL_VALUE (sym) = valu;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &local_symbols);
- break;
- default:
- SYMBOL_TYPE (sym) = error_type (&p, objfile);
- SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
- SYMBOL_VALUE (sym) = 0;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- add_symbol_to_list (sym, &file_symbols);
- break;
- }
- /* Some systems pass variables of certain types by reference instead
- of by value, i.e. they will pass the address of a structure (in a
- register or on the stack) instead of the structure itself. */
- if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
- && SYMBOL_IS_ARGUMENT (sym))
- {
- /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
- variables passed in a register). */
- if (SYMBOL_CLASS (sym) == LOC_REGISTER)
- SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
- /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
- and subsequent arguments on SPARC, for example). */
- else if (SYMBOL_CLASS (sym) == LOC_ARG)
- SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
- }
- return sym;
- }
- /* Skip rest of this symbol and return an error type.
- General notes on error recovery: error_type always skips to the
- end of the symbol (modulo cretinous dbx symbol name continuation).
- Thus code like this:
- if (*(*pp)++ != ';')
- return error_type (pp, objfile);
- is wrong because if *pp starts out pointing at '\0' (typically as the
- result of an earlier error), it will be incremented to point to the
- start of the next symbol, which might produce strange results, at least
- if you run off the end of the string table. Instead use
- if (**pp != ';')
- return error_type (pp, objfile);
- ++*pp;
- or
- if (**pp != ';')
- foo = error_type (pp, objfile);
- else
- ++*pp;
- And in case it isn't obvious, the point of all this hair is so the compiler
- can define new types and new syntaxes, and old versions of the
- debugger will be able to read the new symbol tables. */
- static struct type *
- error_type (char **pp, struct objfile *objfile)
- {
- complaint (&symfile_complaints,
- _("couldn't parse type; debugger out of date?"));
- while (1)
- {
- /* Skip to end of symbol. */
- while (**pp != '\0')
- {
- (*pp)++;
- }
- /* Check for and handle cretinous dbx symbol name continuation! */
- if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
- {
- *pp = next_symbol_text (objfile);
- }
- else
- {
- break;
- }
- }
- return objfile_type (objfile)->builtin_error;
- }
- /* Read type information or a type definition; return the type. Even
- though this routine accepts either type information or a type
- definition, the distinction is relevant--some parts of stabsread.c
- assume that type information starts with a digit, '-', or '(' in
- deciding whether to call read_type. */
- static struct type *
- read_type (char **pp, struct objfile *objfile)
- {
- struct type *type = 0;
- struct type *type1;
- int typenums[2];
- char type_descriptor;
- /* Size in bits of type if specified by a type attribute, or -1 if
- there is no size attribute. */
- int type_size = -1;
- /* Used to distinguish string and bitstring from char-array and set. */
- int is_string = 0;
- /* Used to distinguish vector from array. */
- int is_vector = 0;
- /* Read type number if present. The type number may be omitted.
- for instance in a two-dimensional array declared with type
- "ar1;1;10;ar1;1;10;4". */
- if ((**pp >= '0' && **pp <= '9')
- || **pp == '('
- || **pp == '-')
- {
- if (read_type_number (pp, typenums) != 0)
- return error_type (pp, objfile);
- if (**pp != '=')
- {
- /* Type is not being defined here. Either it already
- exists, or this is a forward reference to it.
- dbx_alloc_type handles both cases. */
- type = dbx_alloc_type (typenums, objfile);
- /* If this is a forward reference, arrange to complain if it
- doesn't get patched up by the time we're done
- reading. */
- if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
- add_undefined_type (type, typenums);
- return type;
- }
- /* Type is being defined here. */
- /* Skip the '='.
- Also skip the type descriptor - we get it below with (*pp)[-1]. */
- (*pp) += 2;
- }
- else
- {
- /* 'typenums=' not present, type is anonymous. Read and return
- the definition, but don't put it in the type vector. */
- typenums[0] = typenums[1] = -1;
- (*pp)++;
- }
- again:
- type_descriptor = (*pp)[-1];
- switch (type_descriptor)
- {
- case 'x':
- {
- enum type_code code;
- /* Used to index through file_symbols. */
- struct pending *ppt;
- int i;
- /* Name including "struct", etc. */
- char *type_name;
- {
- char *from, *to, *p, *q1, *q2;
- /* Set the type code according to the following letter. */
- switch ((*pp)[0])
- {
- case 's':
- code = TYPE_CODE_STRUCT;
- break;
- case 'u':
- code = TYPE_CODE_UNION;
- break;
- case 'e':
- code = TYPE_CODE_ENUM;
- break;
- default:
- {
- /* Complain and keep going, so compilers can invent new
- cross-reference types. */
- complaint (&symfile_complaints,
- _("Unrecognized cross-reference type `%c'"),
- (*pp)[0]);
- code = TYPE_CODE_STRUCT;
- break;
- }
- }
- q1 = strchr (*pp, '<');
- p = strchr (*pp, ':');
- if (p == NULL)
- return error_type (pp, objfile);
- if (q1 && p > q1 && p[1] == ':')
- {
- int nesting_level = 0;
- for (q2 = q1; *q2; q2++)
- {
- if (*q2 == '<')
- nesting_level++;
- else if (*q2 == '>')
- nesting_level--;
- else if (*q2 == ':' && nesting_level == 0)
- break;
- }
- p = q2;
- if (*p != ':')
- return error_type (pp, objfile);
- }
- type_name = NULL;
- if (current_subfile->language == language_cplus)
- {
- char *new_name, *name = alloca (p - *pp + 1);
- memcpy (name, *pp, p - *pp);
- name[p - *pp] = '\0';
- new_name = cp_canonicalize_string (name);
- if (new_name != NULL)
- {
- type_name = obstack_copy0 (&objfile->objfile_obstack,
- new_name, strlen (new_name));
- xfree (new_name);
- }
- }
- if (type_name == NULL)
- {
- to = type_name = (char *)
- obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
- /* Copy the name. */
- from = *pp + 1;
- while (from < p)
- *to++ = *from++;
- *to = '\0';
- }
- /* Set the pointer ahead of the name which we just read, and
- the colon. */
- *pp = p + 1;
- }
- /* If this type has already been declared, then reuse the same
- type, rather than allocating a new one. This saves some
- memory. */
- for (ppt = file_symbols; ppt; ppt = ppt->next)
- for (i = 0; i < ppt->nsyms; i++)
- {
- struct symbol *sym = ppt->symbol[i];
- if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
- && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
- && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
- && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
- {
- obstack_free (&objfile->objfile_obstack, type_name);
- type = SYMBOL_TYPE (sym);
- if (typenums[0] != -1)
- *dbx_lookup_type (typenums, objfile) = type;
- return type;
- }
- }
- /* Didn't find the type to which this refers, so we must
- be dealing with a forward reference. Allocate a type
- structure for it, and keep track of it so we can
- fill in the rest of the fields when we get the full
- type. */
- type = dbx_alloc_type (typenums, objfile);
- TYPE_CODE (type) = code;
- TYPE_TAG_NAME (type) = type_name;
- INIT_CPLUS_SPECIFIC (type);
- TYPE_STUB (type) = 1;
- add_undefined_type (type, typenums);
- return type;
- }
- case '-': /* RS/6000 built-in type */
- case '0':
- case '1':
- case '2':
- case '3':
- case '4':
- case '5':
- case '6':
- case '7':
- case '8':
- case '9':
- case '(':
- (*pp)--;
- /* We deal with something like t(1,2)=(3,4)=... which
- the Lucid compiler and recent gcc versions (post 2.7.3) use. */
- /* Allocate and enter the typedef type first.
- This handles recursive types. */
- type = dbx_alloc_type (typenums, objfile);
- TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
- {
- struct type *xtype = read_type (pp, objfile);
- if (type == xtype)
- {
- /* It's being defined as itself. That means it is "void". */
- TYPE_CODE (type) = TYPE_CODE_VOID;
- TYPE_LENGTH (type) = 1;
- }
- else if (type_size >= 0 || is_string)
- {
- /* This is the absolute wrong way to construct types. Every
- other debug format has found a way around this problem and
- the related problems with unnecessarily stubbed types;
- someone motivated should attempt to clean up the issue
- here as well. Once a type pointed to has been created it
- should not be modified.
- Well, it's not *absolutely* wrong. Constructing recursive
- types (trees, linked lists) necessarily entails modifying
- types after creating them. Constructing any loop structure
- entails side effects. The Dwarf 2 reader does handle this
- more gracefully (it never constructs more than once
- instance of a type object, so it doesn't have to copy type
- objects wholesale), but it still mutates type objects after
- other folks have references to them.
- Keep in mind that this circularity/mutation issue shows up
- at the source language level, too: C's "incomplete types",
- for example. So the proper cleanup, I think, would be to
- limit GDB's type smashing to match exactly those required
- by the source language. So GDB could have a
- "complete_this_type" function, but never create unnecessary
- copies of a type otherwise. */
- replace_type (type, xtype);
- TYPE_NAME (type) = NULL;
- TYPE_TAG_NAME (type) = NULL;
- }
- else
- {
- TYPE_TARGET_STUB (type) = 1;
- TYPE_TARGET_TYPE (type) = xtype;
- }
- }
- break;
- /* In the following types, we must be sure to overwrite any existing
- type that the typenums refer to, rather than allocating a new one
- and making the typenums point to the new one. This is because there
- may already be pointers to the existing type (if it had been
- forward-referenced), and we must change it to a pointer, function,
- reference, or whatever, *in-place*. */
- case '*': /* Pointer to another type */
- type1 = read_type (pp, objfile);
- type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
- break;
- case '&': /* Reference to another type */
- type1 = read_type (pp, objfile);
- type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
- break;
- case 'f': /* Function returning another type */
- type1 = read_type (pp, objfile);
- type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
- break;
- case 'g': /* Prototyped function. (Sun) */
- {
- /* Unresolved questions:
- - According to Sun's ``STABS Interface Manual'', for 'f'
- and 'F' symbol descriptors, a `0' in the argument type list
- indicates a varargs function. But it doesn't say how 'g'
- type descriptors represent that info. Someone with access
- to Sun's toolchain should try it out.
- - According to the comment in define_symbol (search for
- `process_prototype_types:'), Sun emits integer arguments as
- types which ref themselves --- like `void' types. Do we
- have to deal with that here, too? Again, someone with
- access to Sun's toolchain should try it out and let us
- know. */
- const char *type_start = (*pp) - 1;
- struct type *return_type = read_type (pp, objfile);
- struct type *func_type
- = make_function_type (return_type,
- dbx_lookup_type (typenums, objfile));
- struct type_list {
- struct type *type;
- struct type_list *next;
- } *arg_types = 0;
- int num_args = 0;
- while (**pp && **pp != '#')
- {
- struct type *arg_type = read_type (pp, objfile);
- struct type_list *new = alloca (sizeof (*new));
- new->type = arg_type;
- new->next = arg_types;
- arg_types = new;
- num_args++;
- }
- if (**pp == '#')
- ++*pp;
- else
- {
- complaint (&symfile_complaints,
- _("Prototyped function type didn't "
- "end arguments with `#':\n%s"),
- type_start);
- }
- /* If there is just one argument whose type is `void', then
- that's just an empty argument list. */
- if (arg_types
- && ! arg_types->next
- && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
- num_args = 0;
- TYPE_FIELDS (func_type)
- = (struct field *) TYPE_ALLOC (func_type,
- num_args * sizeof (struct field));
- memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
- {
- int i;
- struct type_list *t;
- /* We stuck each argument type onto the front of the list
- when we read it, so the list is reversed. Build the
- fields array right-to-left. */
- for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
- TYPE_FIELD_TYPE (func_type, i) = t->type;
- }
- TYPE_NFIELDS (func_type) = num_args;
- TYPE_PROTOTYPED (func_type) = 1;
- type = func_type;
- break;
- }
- case 'k': /* Const qualifier on some type (Sun) */
- type = read_type (pp, objfile);
- type = make_cv_type (1, TYPE_VOLATILE (type), type,
- dbx_lookup_type (typenums, objfile));
- break;
- case 'B': /* Volatile qual on some type (Sun) */
- type = read_type (pp, objfile);
- type = make_cv_type (TYPE_CONST (type), 1, type,
- dbx_lookup_type (typenums, objfile));
- break;
- case '@':
- if (isdigit (**pp) || **pp == '(' || **pp == '-')
- { /* Member (class & variable) type */
- /* FIXME -- we should be doing smash_to_XXX types here. */
- struct type *domain = read_type (pp, objfile);
- struct type *memtype;
- if (**pp != ',')
- /* Invalid member type data format. */
- return error_type (pp, objfile);
- ++*pp;
- memtype = read_type (pp, objfile);
- type = dbx_alloc_type (typenums, objfile);
- smash_to_memberptr_type (type, domain, memtype);
- }
- else
- /* type attribute */
- {
- char *attr = *pp;
- /* Skip to the semicolon. */
- while (**pp != ';' && **pp != '\0')
- ++(*pp);
- if (**pp == '\0')
- return error_type (pp, objfile);
- else
- ++ * pp; /* Skip the semicolon. */
- switch (*attr)
- {
- case 's': /* Size attribute */
- type_size = atoi (attr + 1);
- if (type_size <= 0)
- type_size = -1;
- break;
- case 'S': /* String attribute */
- /* FIXME: check to see if following type is array? */
- is_string = 1;
- break;
- case 'V': /* Vector attribute */
- /* FIXME: check to see if following type is array? */
- is_vector = 1;
- break;
- default:
- /* Ignore unrecognized type attributes, so future compilers
- can invent new ones. */
- break;
- }
- ++*pp;
- goto again;
- }
- break;
- case '#': /* Method (class & fn) type */
- if ((*pp)[0] == '#')
- {
- /* We'll get the parameter types from the name. */
- struct type *return_type;
- (*pp)++;
- return_type = read_type (pp, objfile);
- if (*(*pp)++ != ';')
- complaint (&symfile_complaints,
- _("invalid (minimal) member type "
- "data format at symtab pos %d."),
- symnum);
- type = allocate_stub_method (return_type);
- if (typenums[0] != -1)
- *dbx_lookup_type (typenums, objfile) = type;
- }
- else
- {
- struct type *domain = read_type (pp, objfile);
- struct type *return_type;
- struct field *args;
- int nargs, varargs;
- if (**pp != ',')
- /* Invalid member type data format. */
- return error_type (pp, objfile);
- else
- ++(*pp);
- return_type = read_type (pp, objfile);
- args = read_args (pp, ';', objfile, &nargs, &varargs);
- if (args == NULL)
- return error_type (pp, objfile);
- type = dbx_alloc_type (typenums, objfile);
- smash_to_method_type (type, domain, return_type, args,
- nargs, varargs);
- }
- break;
- case 'r': /* Range type */
- type = read_range_type (pp, typenums, type_size, objfile);
- if (typenums[0] != -1)
- *dbx_lookup_type (typenums, objfile) = type;
- break;
- case 'b':
- {
- /* Sun ACC builtin int type */
- type = read_sun_builtin_type (pp, typenums, objfile);
- if (typenums[0] != -1)
- *dbx_lookup_type (typenums, objfile) = type;
- }
- break;
- case 'R': /* Sun ACC builtin float type */
- type = read_sun_floating_type (pp, typenums, objfile);
- if (typenums[0] != -1)
- *dbx_lookup_type (typenums, objfile) = type;
- break;
- case 'e': /* Enumeration type */
- type = dbx_alloc_type (typenums, objfile);
- type = read_enum_type (pp, type, objfile);
- if (typenums[0] != -1)
- *dbx_lookup_type (typenums, objfile) = type;
- break;
- case 's': /* Struct type */
- case 'u': /* Union type */
- {
- enum type_code type_code = TYPE_CODE_UNDEF;
- type = dbx_alloc_type (typenums, objfile);
- switch (type_descriptor)
- {
- case 's':
- type_code = TYPE_CODE_STRUCT;
- break;
- case 'u':
- type_code = TYPE_CODE_UNION;
- break;
- }
- type = read_struct_type (pp, type, type_code, objfile);
- break;
- }
- case 'a': /* Array type */
- if (**pp != 'r')
- return error_type (pp, objfile);
- ++*pp;
- type = dbx_alloc_type (typenums, objfile);
- type = read_array_type (pp, type, objfile);
- if (is_string)
- TYPE_CODE (type) = TYPE_CODE_STRING;
- if (is_vector)
- make_vector_type (type);
- break;
- case 'S': /* Set type */
- type1 = read_type (pp, objfile);
- type = create_set_type ((struct type *) NULL, type1);
- if (typenums[0] != -1)
- *dbx_lookup_type (typenums, objfile) = type;
- break;
- default:
- --*pp; /* Go back to the symbol in error. */
- /* Particularly important if it was \0! */
- return error_type (pp, objfile);
- }
- if (type == 0)
- {
- warning (_("GDB internal error, type is NULL in stabsread.c."));
- return error_type (pp, objfile);
- }
- /* Size specified in a type attribute overrides any other size. */
- if (type_size != -1)
- TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
- return type;
- }
- /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
- Return the proper type node for a given builtin type number. */
- static const struct objfile_data *rs6000_builtin_type_data;
- static struct type *
- rs6000_builtin_type (int typenum, struct objfile *objfile)
- {
- struct type **negative_types = objfile_data (objfile,
- rs6000_builtin_type_data);
- /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
- #define NUMBER_RECOGNIZED 34
- struct type *rettype = NULL;
- if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
- {
- complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
- return objfile_type (objfile)->builtin_error;
- }
- if (!negative_types)
- {
- /* This includes an empty slot for type number -0. */
- negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
- NUMBER_RECOGNIZED + 1, struct type *);
- set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
- }
- if (negative_types[-typenum] != NULL)
- return negative_types[-typenum];
- #if TARGET_CHAR_BIT != 8
- #error This code wrong for TARGET_CHAR_BIT not 8
- /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
- that if that ever becomes not true, the correct fix will be to
- make the size in the struct type to be in bits, not in units of
- TARGET_CHAR_BIT. */
- #endif
- switch (-typenum)
- {
- case 1:
- /* The size of this and all the other types are fixed, defined
- by the debugging format. If there is a type called "int" which
- is other than 32 bits, then it should use a new negative type
- number (or avoid negative type numbers for that case).
- See stabs.texinfo. */
- rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
- break;
- case 2:
- rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
- break;
- case 3:
- rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
- break;
- case 4:
- rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
- break;
- case 5:
- rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
- "unsigned char", objfile);
- break;
- case 6:
- rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
- break;
- case 7:
- rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
- "unsigned short", objfile);
- break;
- case 8:
- rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
- "unsigned int", objfile);
- break;
- case 9:
- rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
- "unsigned", objfile);
- break;
- case 10:
- rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
- "unsigned long", objfile);
- break;
- case 11:
- rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
- break;
- case 12:
- /* IEEE single precision (32 bit). */
- rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
- break;
- case 13:
- /* IEEE double precision (64 bit). */
- rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
- break;
- case 14:
- /* This is an IEEE double on the RS/6000, and different machines with
- different sizes for "long double" should use different negative
- type numbers. See stabs.texinfo. */
- rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
- break;
- case 15:
- rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
- break;
- case 16:
- rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
- "boolean", objfile);
- break;
- case 17:
- rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
- break;
- case 18:
- rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
- break;
- case 19:
- rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
- break;
- case 20:
- rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
- "character", objfile);
- break;
- case 21:
- rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
- "logical*1", objfile);
- break;
- case 22:
- rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
- "logical*2", objfile);
- break;
- case 23:
- rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
- "logical*4", objfile);
- break;
- case 24:
- rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
- "logical", objfile);
- break;
- case 25:
- /* Complex type consisting of two IEEE single precision values. */
- rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
- TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
- objfile);
- break;
- case 26:
- /* Complex type consisting of two IEEE double precision values. */
- rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
- TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
- objfile);
- break;
- case 27:
- rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
- break;
- case 28:
- rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
- break;
- case 29:
- rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
- break;
- case 30:
- rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
- break;
- case 31:
- rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
- break;
- case 32:
- rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
- "unsigned long long", objfile);
- break;
- case 33:
- rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
- "logical*8", objfile);
- break;
- case 34:
- rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
- break;
- }
- negative_types[-typenum] = rettype;
- return rettype;
- }
- /* This page contains subroutines of read_type. */
- /* Wrapper around method_name_from_physname to flag a complaint
- if there is an error. */
- static char *
- stabs_method_name_from_physname (const char *physname)
- {
- char *method_name;
- method_name = method_name_from_physname (physname);
- if (method_name == NULL)
- {
- complaint (&symfile_complaints,
- _("Method has bad physname %s\n"), physname);
- return NULL;
- }
- return method_name;
- }
- /* Read member function stabs info for C++ classes. The form of each member
- function data is:
- NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
- An example with two member functions is:
- afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
- For the case of overloaded operators, the format is op$::*.funcs, where
- $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
- name (such as `+=') and `.' marks the end of the operator name.
- Returns 1 for success, 0 for failure. */
- static int
- read_member_functions (struct field_info *fip, char **pp, struct type *type,
- struct objfile *objfile)
- {
- int nfn_fields = 0;
- int length = 0;
- int i;
- struct next_fnfield
- {
- struct next_fnfield *next;
- struct fn_field fn_field;
- }
- *sublist;
- struct type *look_ahead_type;
- struct next_fnfieldlist *new_fnlist;
- struct next_fnfield *new_sublist;
- char *main_fn_name;
- char *p;
- /* Process each list until we find something that is not a member function
- or find the end of the functions. */
- while (**pp != ';')
- {
- /* We should be positioned at the start of the function name.
- Scan forward to find the first ':' and if it is not the
- first of a "::" delimiter, then this is not a member function. */
- p = *pp;
- while (*p != ':')
- {
- p++;
- }
- if (p[1] != ':')
- {
- break;
- }
- sublist = NULL;
- look_ahead_type = NULL;
- length = 0;
- new_fnlist = (struct next_fnfieldlist *)
- xmalloc (sizeof (struct next_fnfieldlist));
- make_cleanup (xfree, new_fnlist);
- memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
- if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
- {
- /* This is a completely wierd case. In order to stuff in the
- names that might contain colons (the usual name delimiter),
- Mike Tiemann defined a different name format which is
- signalled if the identifier is "op$". In that case, the
- format is "op$::XXXX." where XXXX is the name. This is
- used for names like "+" or "=". YUUUUUUUK! FIXME! */
- /* This lets the user type "break operator+".
- We could just put in "+" as the name, but that wouldn't
- work for "*". */
- static char opname[32] = "op$";
- char *o = opname + 3;
- /* Skip past '::'. */
- *pp = p + 2;
- STABS_CONTINUE (pp, objfile);
- p = *pp;
- while (*p != '.')
- {
- *o++ = *p++;
- }
- main_fn_name = savestring (opname, o - opname);
- /* Skip past '.' */
- *pp = p + 1;
- }
- else
- {
- main_fn_name = savestring (*pp, p - *pp);
- /* Skip past '::'. */
- *pp = p + 2;
- }
- new_fnlist->fn_fieldlist.name = main_fn_name;
- do
- {
- new_sublist =
- (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
- make_cleanup (xfree, new_sublist);
- memset (new_sublist, 0, sizeof (struct next_fnfield));
- /* Check for and handle cretinous dbx symbol name continuation! */
- if (look_ahead_type == NULL)
- {
- /* Normal case. */
- STABS_CONTINUE (pp, objfile);
- new_sublist->fn_field.type = read_type (pp, objfile);
- if (**pp != ':')
- {
- /* Invalid symtab info for member function. */
- return 0;
- }
- }
- else
- {
- /* g++ version 1 kludge */
- new_sublist->fn_field.type = look_ahead_type;
- look_ahead_type = NULL;
- }
- (*pp)++;
- p = *pp;
- while (*p != ';')
- {
- p++;
- }
- /* If this is just a stub, then we don't have the real name here. */
- if (TYPE_STUB (new_sublist->fn_field.type))
- {
- if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
- TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
- new_sublist->fn_field.is_stub = 1;
- }
- new_sublist->fn_field.physname = savestring (*pp, p - *pp);
- *pp = p + 1;
- /* Set this member function's visibility fields. */
- switch (*(*pp)++)
- {
- case VISIBILITY_PRIVATE:
- new_sublist->fn_field.is_private = 1;
- break;
- case VISIBILITY_PROTECTED:
- new_sublist->fn_field.is_protected = 1;
- break;
- }
- STABS_CONTINUE (pp, objfile);
- switch (**pp)
- {
- case 'A': /* Normal functions. */
- new_sublist->fn_field.is_const = 0;
- new_sublist->fn_field.is_volatile = 0;
- (*pp)++;
- break;
- case 'B': /* `const' member functions. */
- new_sublist->fn_field.is_const = 1;
- new_sublist->fn_field.is_volatile = 0;
- (*pp)++;
- break;
- case 'C': /* `volatile' member function. */
- new_sublist->fn_field.is_const = 0;
- new_sublist->fn_field.is_volatile = 1;
- (*pp)++;
- break;
- case 'D': /* `const volatile' member function. */
- new_sublist->fn_field.is_const = 1;
- new_sublist->fn_field.is_volatile = 1;
- (*pp)++;
- break;
- case '*': /* File compiled with g++ version 1 --
- no info. */
- case '?':
- case '.':
- break;
- default:
- complaint (&symfile_complaints,
- _("const/volatile indicator missing, got '%c'"),
- **pp);
- break;
- }
- switch (*(*pp)++)
- {
- case '*':
- {
- int nbits;
- /* virtual member function, followed by index.
- The sign bit is set to distinguish pointers-to-methods
- from virtual function indicies. Since the array is
- in words, the quantity must be shifted left by 1
- on 16 bit machine, and by 2 on 32 bit machine, forcing
- the sign bit out, and usable as a valid index into
- the array. Remove the sign bit here. */
- new_sublist->fn_field.voffset =
- (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
- if (nbits != 0)
- return 0;
- STABS_CONTINUE (pp, objfile);
- if (**pp == ';' || **pp == '\0')
- {
- /* Must be g++ version 1. */
- new_sublist->fn_field.fcontext = 0;
- }
- else
- {
- /* Figure out from whence this virtual function came.
- It may belong to virtual function table of
- one of its baseclasses. */
- look_ahead_type = read_type (pp, objfile);
- if (**pp == ':')
- {
- /* g++ version 1 overloaded methods. */
- }
- else
- {
- new_sublist->fn_field.fcontext = look_ahead_type;
- if (**pp != ';')
- {
- return 0;
- }
- else
- {
- ++*pp;
- }
- look_ahead_type = NULL;
- }
- }
- break;
- }
- case '?':
- /* static member function. */
- {
- int slen = strlen (main_fn_name);
- new_sublist->fn_field.voffset = VOFFSET_STATIC;
- /* For static member functions, we can't tell if they
- are stubbed, as they are put out as functions, and not as
- methods.
- GCC v2 emits the fully mangled name if
- dbxout.c:flag_minimal_debug is not set, so we have to
- detect a fully mangled physname here and set is_stub
- accordingly. Fully mangled physnames in v2 start with
- the member function name, followed by two underscores.
- GCC v3 currently always emits stubbed member functions,
- but with fully mangled physnames, which start with _Z. */
- if (!(strncmp (new_sublist->fn_field.physname,
- main_fn_name, slen) == 0
- && new_sublist->fn_field.physname[slen] == '_'
- && new_sublist->fn_field.physname[slen + 1] == '_'))
- {
- new_sublist->fn_field.is_stub = 1;
- }
- break;
- }
- default:
- /* error */
- complaint (&symfile_complaints,
- _("member function type missing, got '%c'"),
- (*pp)[-1]);
- /* Fall through into normal member function. */
- case '.':
- /* normal member function. */
- new_sublist->fn_field.voffset = 0;
- new_sublist->fn_field.fcontext = 0;
- break;
- }
- new_sublist->next = sublist;
- sublist = new_sublist;
- length++;
- STABS_CONTINUE (pp, objfile);
- }
- while (**pp != ';' && **pp != '\0');
- (*pp)++;
- STABS_CONTINUE (pp, objfile);
- /* Skip GCC 3.X member functions which are duplicates of the callable
- constructor/destructor. */
- if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
- || strcmp_iw (main_fn_name, "__base_dtor ") == 0
- || strcmp (main_fn_name, "__deleting_dtor") == 0)
- {
- xfree (main_fn_name);
- }
- else
- {
- int has_stub = 0;
- int has_destructor = 0, has_other = 0;
- int is_v3 = 0;
- struct next_fnfield *tmp_sublist;
- /* Various versions of GCC emit various mostly-useless
- strings in the name field for special member functions.
- For stub methods, we need to defer correcting the name
- until we are ready to unstub the method, because the current
- name string is used by gdb_mangle_name. The only stub methods
- of concern here are GNU v2 operators; other methods have their
- names correct (see caveat below).
- For non-stub methods, in GNU v3, we have a complete physname.
- Therefore we can safely correct the name now. This primarily
- affects constructors and destructors, whose name will be
- __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
- operators will also have incorrect names; for instance,
- "operator int" will be named "operator i" (i.e. the type is
- mangled).
- For non-stub methods in GNU v2, we have no easy way to
- know if we have a complete physname or not. For most
- methods the result depends on the platform (if CPLUS_MARKER
- can be `$' or `.', it will use minimal debug information, or
- otherwise the full physname will be included).
- Rather than dealing with this, we take a different approach.
- For v3 mangled names, we can use the full physname; for v2,
- we use cplus_demangle_opname (which is actually v2 specific),
- because the only interesting names are all operators - once again
- barring the caveat below. Skip this process if any method in the
- group is a stub, to prevent our fouling up the workings of
- gdb_mangle_name.
- The caveat: GCC 2.95.x (and earlier?) put constructors and
- destructors in the same method group. We need to split this
- into two groups, because they should have different names.
- So for each method group we check whether it contains both
- routines whose physname appears to be a destructor (the physnames
- for and destructors are always provided, due to quirks in v2
- mangling) and routines whose physname does not appear to be a
- destructor. If so then we break up the list into two halves.
- Even if the constructors and destructors aren't in the same group
- the destructor will still lack the leading tilde, so that also
- needs to be fixed.
- So, to summarize what we expect and handle here:
- Given Given Real Real Action
- method name physname physname method name
- __opi [none] __opi__3Foo operator int opname
- [now or later]
- Foo _._3Foo _._3Foo ~Foo separate and
- rename
- operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
- __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
- */
- tmp_sublist = sublist;
- while (tmp_sublist != NULL)
- {
- if (tmp_sublist->fn_field.is_stub)
- has_stub = 1;
- if (tmp_sublist->fn_field.physname[0] == '_'
- && tmp_sublist->fn_field.physname[1] == 'Z')
- is_v3 = 1;
- if (is_destructor_name (tmp_sublist->fn_field.physname))
- has_destructor++;
- else
- has_other++;
- tmp_sublist = tmp_sublist->next;
- }
- if (has_destructor && has_other)
- {
- struct next_fnfieldlist *destr_fnlist;
- struct next_fnfield *last_sublist;
- /* Create a new fn_fieldlist for the destructors. */
- destr_fnlist = (struct next_fnfieldlist *)
- xmalloc (sizeof (struct next_fnfieldlist));
- make_cleanup (xfree, destr_fnlist);
- memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
- destr_fnlist->fn_fieldlist.name
- = obconcat (&objfile->objfile_obstack, "~",
- new_fnlist->fn_fieldlist.name, (char *) NULL);
- destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
- obstack_alloc (&objfile->objfile_obstack,
- sizeof (struct fn_field) * has_destructor);
- memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
- sizeof (struct fn_field) * has_destructor);
- tmp_sublist = sublist;
- last_sublist = NULL;
- i = 0;
- while (tmp_sublist != NULL)
- {
- if (!is_destructor_name (tmp_sublist->fn_field.physname))
- {
- tmp_sublist = tmp_sublist->next;
- continue;
- }
- destr_fnlist->fn_fieldlist.fn_fields[i++]
- = tmp_sublist->fn_field;
- if (last_sublist)
- last_sublist->next = tmp_sublist->next;
- else
- sublist = tmp_sublist->next;
- last_sublist = tmp_sublist;
- tmp_sublist = tmp_sublist->next;
- }
- destr_fnlist->fn_fieldlist.length = has_destructor;
- destr_fnlist->next = fip->fnlist;
- fip->fnlist = destr_fnlist;
- nfn_fields++;
- length -= has_destructor;
- }
- else if (is_v3)
- {
- /* v3 mangling prevents the use of abbreviated physnames,
- so we can do this here. There are stubbed methods in v3
- only:
- - in -gstabs instead of -gstabs+
- - or for static methods, which are output as a function type
- instead of a method type. */
- char *new_method_name =
- stabs_method_name_from_physname (sublist->fn_field.physname);
- if (new_method_name != NULL
- && strcmp (new_method_name,
- new_fnlist->fn_fieldlist.name) != 0)
- {
- new_fnlist->fn_fieldlist.name = new_method_name;
- xfree (main_fn_name);
- }
- else
- xfree (new_method_name);
- }
- else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
- {
- new_fnlist->fn_fieldlist.name =
- obconcat (&objfile->objfile_obstack,
- "~", main_fn_name, (char *)NULL);
- xfree (main_fn_name);
- }
- else if (!has_stub)
- {
- char dem_opname[256];
- int ret;
- ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
- dem_opname, DMGL_ANSI);
- if (!ret)
- ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
- dem_opname, 0);
- if (ret)
- new_fnlist->fn_fieldlist.name
- = obstack_copy0 (&objfile->objfile_obstack,
- dem_opname, strlen (dem_opname));
- xfree (main_fn_name);
- }
- new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
- obstack_alloc (&objfile->objfile_obstack,
- sizeof (struct fn_field) * length);
- memset (new_fnlist->fn_fieldlist.fn_fields, 0,
- sizeof (struct fn_field) * length);
- for (i = length; (i--, sublist); sublist = sublist->next)
- {
- new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
- }
- new_fnlist->fn_fieldlist.length = length;
- new_fnlist->next = fip->fnlist;
- fip->fnlist = new_fnlist;
- nfn_fields++;
- }
- }
- if (nfn_fields)
- {
- ALLOCATE_CPLUS_STRUCT_TYPE (type);
- TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
- TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
- memset (TYPE_FN_FIELDLISTS (type), 0,
- sizeof (struct fn_fieldlist) * nfn_fields);
- TYPE_NFN_FIELDS (type) = nfn_fields;
- }
- return 1;
- }
- /* Special GNU C++ name.
- Returns 1 for success, 0 for failure. "failure" means that we can't
- keep parsing and it's time for error_type(). */
- static int
- read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
- struct objfile *objfile)
- {
- char *p;
- const char *name;
- char cpp_abbrev;
- struct type *context;
- p = *pp;
- if (*++p == 'v')
- {
- name = NULL;
- cpp_abbrev = *++p;
- *pp = p + 1;
- /* At this point, *pp points to something like "22:23=*22...",
- where the type number before the ':' is the "context" and
- everything after is a regular type definition. Lookup the
- type, find it's name, and construct the field name. */
- context = read_type (pp, objfile);
- switch (cpp_abbrev)
- {
- case 'f': /* $vf -- a virtual function table pointer */
- name = type_name_no_tag (context);
- if (name == NULL)
- {
- name = "";
- }
- fip->list->field.name = obconcat (&objfile->objfile_obstack,
- vptr_name, name, (char *) NULL);
- break;
- case 'b': /* $vb -- a virtual bsomethingorother */
- name = type_name_no_tag (context);
- if (name == NULL)
- {
- complaint (&symfile_complaints,
- _("C++ abbreviated type name "
- "unknown at symtab pos %d"),
- symnum);
- name = "FOO";
- }
- fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
- name, (char *) NULL);
- break;
- default:
- invalid_cpp_abbrev_complaint (*pp);
- fip->list->field.name = obconcat (&objfile->objfile_obstack,
- "INVALID_CPLUSPLUS_ABBREV",
- (char *) NULL);
- break;
- }
- /* At this point, *pp points to the ':'. Skip it and read the
- field type. */
- p = ++(*pp);
- if (p[-1] != ':')
- {
- invalid_cpp_abbrev_complaint (*pp);
- return 0;
- }
- fip->list->field.type = read_type (pp, objfile);
- if (**pp == ',')
- (*pp)++; /* Skip the comma. */
- else
- return 0;
- {
- int nbits;
- SET_FIELD_BITPOS (fip->list->field,
- read_huge_number (pp, ';', &nbits, 0));
- if (nbits != 0)
- return 0;
- }
- /* This field is unpacked. */
- FIELD_BITSIZE (fip->list->field) = 0;
- fip->list->visibility = VISIBILITY_PRIVATE;
- }
- else
- {
- invalid_cpp_abbrev_complaint (*pp);
- /* We have no idea what syntax an unrecognized abbrev would have, so
- better return 0. If we returned 1, we would need to at least advance
- *pp to avoid an infinite loop. */
- return 0;
- }
- return 1;
- }
- static void
- read_one_struct_field (struct field_info *fip, char **pp, char *p,
- struct type *type, struct objfile *objfile)
- {
- struct gdbarch *gdbarch = get_objfile_arch (objfile);
- fip->list->field.name =
- obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
- *pp = p + 1;
- /* This means we have a visibility for a field coming. */
- if (**pp == '/')
- {
- (*pp)++;
- fip->list->visibility = *(*pp)++;
- }
- else
- {
- /* normal dbx-style format, no explicit visibility */
- fip->list->visibility = VISIBILITY_PUBLIC;
- }
- fip->list->field.type = read_type (pp, objfile);
- if (**pp == ':')
- {
- p = ++(*pp);
- #if 0
- /* Possible future hook for nested types. */
- if (**pp == '!')
- {
- fip->list->field.bitpos = (long) -2; /* nested type */
- p = ++(*pp);
- }
- else
- ...;
- #endif
- while (*p != ';')
- {
- p++;
- }
- /* Static class member. */
- SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
- *pp = p + 1;
- return;
- }
- else if (**pp != ',')
- {
- /* Bad structure-type format. */
- stabs_general_complaint ("bad structure-type format");
- return;
- }
- (*pp)++; /* Skip the comma. */
- {
- int nbits;
- SET_FIELD_BITPOS (fip->list->field,
- read_huge_number (pp, ',', &nbits, 0));
- if (nbits != 0)
- {
- stabs_general_complaint ("bad structure-type format");
- return;
- }
- FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
- if (nbits != 0)
- {
- stabs_general_complaint ("bad structure-type format");
- return;
- }
- }
- if (FIELD_BITPOS (fip->list->field) == 0
- && FIELD_BITSIZE (fip->list->field) == 0)
- {
- /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
- it is a field which has been optimized out. The correct stab for
- this case is to use VISIBILITY_IGNORE, but that is a recent
- invention. (2) It is a 0-size array. For example
- union { int num; char str[0]; } foo. Printing _("<no value>" for
- str in "p foo" is OK, since foo.str (and thus foo.str[3])
- will continue to work, and a 0-size array as a whole doesn't
- have any contents to print.
- I suspect this probably could also happen with gcc -gstabs (not
- -gstabs+) for static fields, and perhaps other C++ extensions.
- Hopefully few people use -gstabs with gdb, since it is intended
- for dbx compatibility. */
- /* Ignore this field. */
- fip->list->visibility = VISIBILITY_IGNORE;
- }
- else
- {
- /* Detect an unpacked field and mark it as such.
- dbx gives a bit size for all fields.
- Note that forward refs cannot be packed,
- and treat enums as if they had the width of ints. */
- struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
- if (TYPE_CODE (field_type) != TYPE_CODE_INT
- && TYPE_CODE (field_type) != TYPE_CODE_RANGE
- && TYPE_CODE (field_type) != TYPE_CODE_BOOL
- && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
- {
- FIELD_BITSIZE (fip->list->field) = 0;
- }
- if ((FIELD_BITSIZE (fip->list->field)
- == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
- || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
- && FIELD_BITSIZE (fip->list->field)
- == gdbarch_int_bit (gdbarch))
- )
- &&
- FIELD_BITPOS (fip->list->field) % 8 == 0)
- {
- FIELD_BITSIZE (fip->list->field) = 0;
- }
- }
- }
- /* Read struct or class data fields. They have the form:
- NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
- At the end, we see a semicolon instead of a field.
- In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
- a static field.
- The optional VISIBILITY is one of:
- '/0' (VISIBILITY_PRIVATE)
- '/1' (VISIBILITY_PROTECTED)
- '/2' (VISIBILITY_PUBLIC)
- '/9' (VISIBILITY_IGNORE)
- or nothing, for C style fields with public visibility.
- Returns 1 for success, 0 for failure. */
- static int
- read_struct_fields (struct field_info *fip, char **pp, struct type *type,
- struct objfile *objfile)
- {
- char *p;
- struct nextfield *new;
- /* We better set p right now, in case there are no fields at all... */
- p = *pp;
- /* Read each data member type until we find the terminating ';' at the end of
- the data member list, or break for some other reason such as finding the
- start of the member function list. */
- /* Stab string for structure/union does not end with two ';' in
- SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
- while (**pp != ';' && **pp != '\0')
- {
- STABS_CONTINUE (pp, objfile);
- /* Get space to record the next field's data. */
- new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
- make_cleanup (xfree, new);
- memset (new, 0, sizeof (struct nextfield));
- new->next = fip->list;
- fip->list = new;
- /* Get the field name. */
- p = *pp;
- /* If is starts with CPLUS_MARKER it is a special abbreviation,
- unless the CPLUS_MARKER is followed by an underscore, in
- which case it is just the name of an anonymous type, which we
- should handle like any other type name. */
- if (is_cplus_marker (p[0]) && p[1] != '_')
- {
- if (!read_cpp_abbrev (fip, pp, type, objfile))
- return 0;
- continue;
- }
- /* Look for the ':' that separates the field name from the field
- values. Data members are delimited by a single ':', while member
- functions are delimited by a pair of ':'s. When we hit the member
- functions (if any), terminate scan loop and return. */
- while (*p != ':' && *p != '\0')
- {
- p++;
- }
- if (*p == '\0')
- return 0;
- /* Check to see if we have hit the member functions yet. */
- if (p[1] == ':')
- {
- break;
- }
- read_one_struct_field (fip, pp, p, type, objfile);
- }
- if (p[0] == ':' && p[1] == ':')
- {
- /* (the deleted) chill the list of fields: the last entry (at
- the head) is a partially constructed entry which we now
- scrub. */
- fip->list = fip->list->next;
- }
- return 1;
- }
- /* *INDENT-OFF* */
- /* The stabs for C++ derived classes contain baseclass information which
- is marked by a '!' character after the total size. This function is
- called when we encounter the baseclass marker, and slurps up all the
- baseclass information.
- Immediately following the '!' marker is the number of base classes that
- the class is derived from, followed by information for each base class.
- For each base class, there are two visibility specifiers, a bit offset
- to the base class information within the derived class, a reference to
- the type for the base class, and a terminating semicolon.
- A typical example, with two base classes, would be "!2,020,19;0264,21;".
- ^^ ^ ^ ^ ^ ^ ^
- Baseclass information marker __________________|| | | | | | |
- Number of baseclasses __________________________| | | | | | |
- Visibility specifiers (2) ________________________| | | | | |
- Offset in bits from start of class _________________| | | | |
- Type number for base class ___________________________| | | |
- Visibility specifiers (2) _______________________________| | |
- Offset in bits from start of class ________________________| |
- Type number of base class ____________________________________|
- Return 1 for success, 0 for (error-type-inducing) failure. */
- /* *INDENT-ON* */
- static int
- read_baseclasses (struct field_info *fip, char **pp, struct type *type,
- struct objfile *objfile)
- {
- int i;
- struct nextfield *new;
- if (**pp != '!')
- {
- return 1;
- }
- else
- {
- /* Skip the '!' baseclass information marker. */
- (*pp)++;
- }
- ALLOCATE_CPLUS_STRUCT_TYPE (type);
- {
- int nbits;
- TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
- if (nbits != 0)
- return 0;
- }
- #if 0
- /* Some stupid compilers have trouble with the following, so break
- it up into simpler expressions. */
- TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
- TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
- #else
- {
- int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
- char *pointer;
- pointer = (char *) TYPE_ALLOC (type, num_bytes);
- TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
- }
- #endif /* 0 */
- B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
- for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
- {
- new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
- make_cleanup (xfree, new);
- memset (new, 0, sizeof (struct nextfield));
- new->next = fip->list;
- fip->list = new;
- FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
- field! */
- STABS_CONTINUE (pp, objfile);
- switch (**pp)
- {
- case '0':
- /* Nothing to do. */
- break;
- case '1':
- SET_TYPE_FIELD_VIRTUAL (type, i);
- break;
- default:
- /* Unknown character. Complain and treat it as non-virtual. */
- {
- complaint (&symfile_complaints,
- _("Unknown virtual character `%c' for baseclass"),
- **pp);
- }
- }
- ++(*pp);
- new->visibility = *(*pp)++;
- switch (new->visibility)
- {
- case VISIBILITY_PRIVATE:
- case VISIBILITY_PROTECTED:
- case VISIBILITY_PUBLIC:
- break;
- default:
- /* Bad visibility format. Complain and treat it as
- public. */
- {
- complaint (&symfile_complaints,
- _("Unknown visibility `%c' for baseclass"),
- new->visibility);
- new->visibility = VISIBILITY_PUBLIC;
- }
- }
- {
- int nbits;
- /* The remaining value is the bit offset of the portion of the object
- corresponding to this baseclass. Always zero in the absence of
- multiple inheritance. */
- SET_FIELD_BITPOS (new->field, read_huge_number (pp, ',', &nbits, 0));
- if (nbits != 0)
- return 0;
- }
- /* The last piece of baseclass information is the type of the
- base class. Read it, and remember it's type name as this
- field's name. */
- new->field.type = read_type (pp, objfile);
- new->field.name = type_name_no_tag (new->field.type);
- /* Skip trailing ';' and bump count of number of fields seen. */
- if (**pp == ';')
- (*pp)++;
- else
- return 0;
- }
- return 1;
- }
- /* The tail end of stabs for C++ classes that contain a virtual function
- pointer contains a tilde, a %, and a type number.
- The type number refers to the base class (possibly this class itself) which
- contains the vtable pointer for the current class.
- This function is called when we have parsed all the method declarations,
- so we can look for the vptr base class info. */
- static int
- read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
- struct objfile *objfile)
- {
- char *p;
- STABS_CONTINUE (pp, objfile);
- /* If we are positioned at a ';', then skip it. */
- if (**pp == ';')
- {
- (*pp)++;
- }
- if (**pp == '~')
- {
- (*pp)++;
- if (**pp == '=' || **pp == '+' || **pp == '-')
- {
- /* Obsolete flags that used to indicate the presence
- of constructors and/or destructors. */
- (*pp)++;
- }
- /* Read either a '%' or the final ';'. */
- if (*(*pp)++ == '%')
- {
- /* The next number is the type number of the base class
- (possibly our own class) which supplies the vtable for
- this class. Parse it out, and search that class to find
- its vtable pointer, and install those into TYPE_VPTR_BASETYPE
- and TYPE_VPTR_FIELDNO. */
- struct type *t;
- int i;
- t = read_type (pp, objfile);
- p = (*pp)++;
- while (*p != '\0' && *p != ';')
- {
- p++;
- }
- if (*p == '\0')
- {
- /* Premature end of symbol. */
- return 0;
- }
- TYPE_VPTR_BASETYPE (type) = t;
- if (type == t) /* Our own class provides vtbl ptr. */
- {
- for (i = TYPE_NFIELDS (t) - 1;
- i >= TYPE_N_BASECLASSES (t);
- --i)
- {
- const char *name = TYPE_FIELD_NAME (t, i);
- if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
- && is_cplus_marker (name[sizeof (vptr_name) - 2]))
- {
- TYPE_VPTR_FIELDNO (type) = i;
- goto gotit;
- }
- }
- /* Virtual function table field not found. */
- complaint (&symfile_complaints,
- _("virtual function table pointer "
- "not found when defining class `%s'"),
- TYPE_NAME (type));
- return 0;
- }
- else
- {
- TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
- }
- gotit:
- *pp = p + 1;
- }
- }
- return 1;
- }
- static int
- attach_fn_fields_to_type (struct field_info *fip, struct type *type)
- {
- int n;
- for (n = TYPE_NFN_FIELDS (type);
- fip->fnlist != NULL;
- fip->fnlist = fip->fnlist->next)
- {
- --n; /* Circumvent Sun3 compiler bug. */
- TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
- }
- return 1;
- }
- /* Create the vector of fields, and record how big it is.
- We need this info to record proper virtual function table information
- for this class's virtual functions. */
- static int
- attach_fields_to_type (struct field_info *fip, struct type *type,
- struct objfile *objfile)
- {
- int nfields = 0;
- int non_public_fields = 0;
- struct nextfield *scan;
- /* Count up the number of fields that we have, as well as taking note of
- whether or not there are any non-public fields, which requires us to
- allocate and build the private_field_bits and protected_field_bits
- bitfields. */
- for (scan = fip->list; scan != NULL; scan = scan->next)
- {
- nfields++;
- if (scan->visibility != VISIBILITY_PUBLIC)
- {
- non_public_fields++;
- }
- }
- /* Now we know how many fields there are, and whether or not there are any
- non-public fields. Record the field count, allocate space for the
- array of fields, and create blank visibility bitfields if necessary. */
- TYPE_NFIELDS (type) = nfields;
- TYPE_FIELDS (type) = (struct field *)
- TYPE_ALLOC (type, sizeof (struct field) * nfields);
- memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
- if (non_public_fields)
- {
- ALLOCATE_CPLUS_STRUCT_TYPE (type);
- TYPE_FIELD_PRIVATE_BITS (type) =
- (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
- B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
- TYPE_FIELD_PROTECTED_BITS (type) =
- (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
- B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
- TYPE_FIELD_IGNORE_BITS (type) =
- (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
- B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
- }
- /* Copy the saved-up fields into the field vector. Start from the
- head of the list, adding to the tail of the field array, so that
- they end up in the same order in the array in which they were
- added to the list. */
- while (nfields-- > 0)
- {
- TYPE_FIELD (type, nfields) = fip->list->field;
- switch (fip->list->visibility)
- {
- case VISIBILITY_PRIVATE:
- SET_TYPE_FIELD_PRIVATE (type, nfields);
- break;
- case VISIBILITY_PROTECTED:
- SET_TYPE_FIELD_PROTECTED (type, nfields);
- break;
- case VISIBILITY_IGNORE:
- SET_TYPE_FIELD_IGNORE (type, nfields);
- break;
- case VISIBILITY_PUBLIC:
- break;
- default:
- /* Unknown visibility. Complain and treat it as public. */
- {
- complaint (&symfile_complaints,
- _("Unknown visibility `%c' for field"),
- fip->list->visibility);
- }
- break;
- }
- fip->list = fip->list->next;
- }
- return 1;
- }
- /* Complain that the compiler has emitted more than one definition for the
- structure type TYPE. */
- static void
- complain_about_struct_wipeout (struct type *type)
- {
- const char *name = "";
- const char *kind = "";
- if (TYPE_TAG_NAME (type))
- {
- name = TYPE_TAG_NAME (type);
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_STRUCT: kind = "struct "; break;
- case TYPE_CODE_UNION: kind = "union "; break;
- case TYPE_CODE_ENUM: kind = "enum "; break;
- default: kind = "";
- }
- }
- else if (TYPE_NAME (type))
- {
- name = TYPE_NAME (type);
- kind = "";
- }
- else
- {
- name = "<unknown>";
- kind = "";
- }
- complaint (&symfile_complaints,
- _("struct/union type gets multiply defined: %s%s"), kind, name);
- }
- /* Set the length for all variants of a same main_type, which are
- connected in the closed chain.
- This is something that needs to be done when a type is defined *after*
- some cross references to this type have already been read. Consider
- for instance the following scenario where we have the following two
- stabs entries:
- .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
- .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
- A stubbed version of type dummy is created while processing the first
- stabs entry. The length of that type is initially set to zero, since
- it is unknown at this point. Also, a "constant" variation of type
- "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
- the stabs line).
- The second stabs entry allows us to replace the stubbed definition
- with the real definition. However, we still need to adjust the length
- of the "constant" variation of that type, as its length was left
- untouched during the main type replacement... */
- static void
- set_length_in_type_chain (struct type *type)
- {
- struct type *ntype = TYPE_CHAIN (type);
- while (ntype != type)
- {
- if (TYPE_LENGTH(ntype) == 0)
- TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
- else
- complain_about_struct_wipeout (ntype);
- ntype = TYPE_CHAIN (ntype);
- }
- }
- /* Read the description of a structure (or union type) and return an object
- describing the type.
- PP points to a character pointer that points to the next unconsumed token
- in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
- *PP will point to "4a:1,0,32;;".
- TYPE points to an incomplete type that needs to be filled in.
- OBJFILE points to the current objfile from which the stabs information is
- being read. (Note that it is redundant in that TYPE also contains a pointer
- to this same objfile, so it might be a good idea to eliminate it. FIXME).
- */
- static struct type *
- read_struct_type (char **pp, struct type *type, enum type_code type_code,
- struct objfile *objfile)
- {
- struct cleanup *back_to;
- struct field_info fi;
- fi.list = NULL;
- fi.fnlist = NULL;
- /* When describing struct/union/class types in stabs, G++ always drops
- all qualifications from the name. So if you've got:
- struct A { ... struct B { ... }; ... };
- then G++ will emit stabs for `struct A::B' that call it simply
- `struct B'. Obviously, if you've got a real top-level definition for
- `struct B', or other nested definitions, this is going to cause
- problems.
- Obviously, GDB can't fix this by itself, but it can at least avoid
- scribbling on existing structure type objects when new definitions
- appear. */
- if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
- || TYPE_STUB (type)))
- {
- complain_about_struct_wipeout (type);
- /* It's probably best to return the type unchanged. */
- return type;
- }
- back_to = make_cleanup (null_cleanup, 0);
- INIT_CPLUS_SPECIFIC (type);
- TYPE_CODE (type) = type_code;
- TYPE_STUB (type) = 0;
- /* First comes the total size in bytes. */
- {
- int nbits;
- TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
- if (nbits != 0)
- {
- do_cleanups (back_to);
- return error_type (pp, objfile);
- }
- set_length_in_type_chain (type);
- }
- /* Now read the baseclasses, if any, read the regular C struct or C++
- class member fields, attach the fields to the type, read the C++
- member functions, attach them to the type, and then read any tilde
- field (baseclass specifier for the class holding the main vtable). */
- if (!read_baseclasses (&fi, pp, type, objfile)
- || !read_struct_fields (&fi, pp, type, objfile)
- || !attach_fields_to_type (&fi, type, objfile)
- || !read_member_functions (&fi, pp, type, objfile)
- || !attach_fn_fields_to_type (&fi, type)
- || !read_tilde_fields (&fi, pp, type, objfile))
- {
- type = error_type (pp, objfile);
- }
- do_cleanups (back_to);
- return (type);
- }
- /* Read a definition of an array type,
- and create and return a suitable type object.
- Also creates a range type which represents the bounds of that
- array. */
- static struct type *
- read_array_type (char **pp, struct type *type,
- struct objfile *objfile)
- {
- struct type *index_type, *element_type, *range_type;
- int lower, upper;
- int adjustable = 0;
- int nbits;
- /* Format of an array type:
- "ar<index type>;lower;upper;<array_contents_type>".
- OS9000: "arlower,upper;<array_contents_type>".
- Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
- for these, produce a type like float[][]. */
- {
- index_type = read_type (pp, objfile);
- if (**pp != ';')
- /* Improper format of array type decl. */
- return error_type (pp, objfile);
- ++*pp;
- }
- if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
- {
- (*pp)++;
- adjustable = 1;
- }
- lower = read_huge_number (pp, ';', &nbits, 0);
- if (nbits != 0)
- return error_type (pp, objfile);
- if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
- {
- (*pp)++;
- adjustable = 1;
- }
- upper = read_huge_number (pp, ';', &nbits, 0);
- if (nbits != 0)
- return error_type (pp, objfile);
- element_type = read_type (pp, objfile);
- if (adjustable)
- {
- lower = 0;
- upper = -1;
- }
- range_type =
- create_static_range_type ((struct type *) NULL, index_type, lower, upper);
- type = create_array_type (type, element_type, range_type);
- return type;
- }
- /* Read a definition of an enumeration type,
- and create and return a suitable type object.
- Also defines the symbols that represent the values of the type. */
- static struct type *
- read_enum_type (char **pp, struct type *type,
- struct objfile *objfile)
- {
- struct gdbarch *gdbarch = get_objfile_arch (objfile);
- char *p;
- char *name;
- long n;
- struct symbol *sym;
- int nsyms = 0;
- struct pending **symlist;
- struct pending *osyms, *syms;
- int o_nsyms;
- int nbits;
- int unsigned_enum = 1;
- #if 0
- /* FIXME! The stabs produced by Sun CC merrily define things that ought
- to be file-scope, between N_FN entries, using N_LSYM. What's a mother
- to do? For now, force all enum values to file scope. */
- if (within_function)
- symlist = &local_symbols;
- else
- #endif
- symlist = &file_symbols;
- osyms = *symlist;
- o_nsyms = osyms ? osyms->nsyms : 0;
- /* The aix4 compiler emits an extra field before the enum members;
- my guess is it's a type of some sort. Just ignore it. */
- if (**pp == '-')
- {
- /* Skip over the type. */
- while (**pp != ':')
- (*pp)++;
- /* Skip over the colon. */
- (*pp)++;
- }
- /* Read the value-names and their values.
- The input syntax is NAME:VALUE,NAME:VALUE, and so on.
- A semicolon or comma instead of a NAME means the end. */
- while (**pp && **pp != ';' && **pp != ',')
- {
- STABS_CONTINUE (pp, objfile);
- p = *pp;
- while (*p != ':')
- p++;
- name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
- *pp = p + 1;
- n = read_huge_number (pp, ',', &nbits, 0);
- if (nbits != 0)
- return error_type (pp, objfile);
- sym = allocate_symbol (objfile);
- SYMBOL_SET_LINKAGE_NAME (sym, name);
- SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
- &objfile->objfile_obstack);
- SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
- SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
- SYMBOL_VALUE (sym) = n;
- if (n < 0)
- unsigned_enum = 0;
- add_symbol_to_list (sym, symlist);
- nsyms++;
- }
- if (**pp == ';')
- (*pp)++; /* Skip the semicolon. */
- /* Now fill in the fields of the type-structure. */
- TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
- set_length_in_type_chain (type);
- TYPE_CODE (type) = TYPE_CODE_ENUM;
- TYPE_STUB (type) = 0;
- if (unsigned_enum)
- TYPE_UNSIGNED (type) = 1;
- TYPE_NFIELDS (type) = nsyms;
- TYPE_FIELDS (type) = (struct field *)
- TYPE_ALLOC (type, sizeof (struct field) * nsyms);
- memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
- /* Find the symbols for the values and put them into the type.
- The symbols can be found in the symlist that we put them on
- to cause them to be defined. osyms contains the old value
- of that symlist; everything up to there was defined by us. */
- /* Note that we preserve the order of the enum constants, so
- that in something like "enum {FOO, LAST_THING=FOO}" we print
- FOO, not LAST_THING. */
- for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
- {
- int last = syms == osyms ? o_nsyms : 0;
- int j = syms->nsyms;
- for (; --j >= last; --n)
- {
- struct symbol *xsym = syms->symbol[j];
- SYMBOL_TYPE (xsym) = type;
- TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
- SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
- TYPE_FIELD_BITSIZE (type, n) = 0;
- }
- if (syms == osyms)
- break;
- }
- return type;
- }
- /* Sun's ACC uses a somewhat saner method for specifying the builtin
- typedefs in every file (for int, long, etc):
- type = b <signed> <width> <format type>; <offset>; <nbits>
- signed = u or s.
- optional format type = c or b for char or boolean.
- offset = offset from high order bit to start bit of type.
- width is # bytes in object of this type, nbits is # bits in type.
- The width/offset stuff appears to be for small objects stored in
- larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
- FIXME. */
- static struct type *
- read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
- {
- int type_bits;
- int nbits;
- int signed_type;
- enum type_code code = TYPE_CODE_INT;
- switch (**pp)
- {
- case 's':
- signed_type = 1;
- break;
- case 'u':
- signed_type = 0;
- break;
- default:
- return error_type (pp, objfile);
- }
- (*pp)++;
- /* For some odd reason, all forms of char put a c here. This is strange
- because no other type has this honor. We can safely ignore this because
- we actually determine 'char'acterness by the number of bits specified in
- the descriptor.
- Boolean forms, e.g Fortran logical*X, put a b here. */
- if (**pp == 'c')
- (*pp)++;
- else if (**pp == 'b')
- {
- code = TYPE_CODE_BOOL;
- (*pp)++;
- }
- /* The first number appears to be the number of bytes occupied
- by this type, except that unsigned short is 4 instead of 2.
- Since this information is redundant with the third number,
- we will ignore it. */
- read_huge_number (pp, ';', &nbits, 0);
- if (nbits != 0)
- return error_type (pp, objfile);
- /* The second number is always 0, so ignore it too. */
- read_huge_number (pp, ';', &nbits, 0);
- if (nbits != 0)
- return error_type (pp, objfile);
- /* The third number is the number of bits for this type. */
- type_bits = read_huge_number (pp, 0, &nbits, 0);
- if (nbits != 0)
- return error_type (pp, objfile);
- /* The type *should* end with a semicolon. If it are embedded
- in a larger type the semicolon may be the only way to know where
- the type ends. If this type is at the end of the stabstring we
- can deal with the omitted semicolon (but we don't have to like
- it). Don't bother to complain(), Sun's compiler omits the semicolon
- for "void". */
- if (**pp == ';')
- ++(*pp);
- if (type_bits == 0)
- return init_type (TYPE_CODE_VOID, 1,
- signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
- objfile);
- else
- return init_type (code,
- type_bits / TARGET_CHAR_BIT,
- signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
- objfile);
- }
- static struct type *
- read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
- {
- int nbits;
- int details;
- int nbytes;
- struct type *rettype;
- /* The first number has more details about the type, for example
- FN_COMPLEX. */
- details = read_huge_number (pp, ';', &nbits, 0);
- if (nbits != 0)
- return error_type (pp, objfile);
- /* The second number is the number of bytes occupied by this type. */
- nbytes = read_huge_number (pp, ';', &nbits, 0);
- if (nbits != 0)
- return error_type (pp, objfile);
- if (details == NF_COMPLEX || details == NF_COMPLEX16
- || details == NF_COMPLEX32)
- {
- rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
- TYPE_TARGET_TYPE (rettype)
- = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
- return rettype;
- }
- return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
- }
- /* Read a number from the string pointed to by *PP.
- The value of *PP is advanced over the number.
- If END is nonzero, the character that ends the
- number must match END, or an error happens;
- and that character is skipped if it does match.
- If END is zero, *PP is left pointing to that character.
- If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
- the number is represented in an octal representation, assume that
- it is represented in a 2's complement representation with a size of
- TWOS_COMPLEMENT_BITS.
- If the number fits in a long, set *BITS to 0 and return the value.
- If not, set *BITS to be the number of bits in the number and return 0.
- If encounter garbage, set *BITS to -1 and return 0. */
- static long
- read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
- {
- char *p = *pp;
- int sign = 1;
- int sign_bit = 0;
- long n = 0;
- int radix = 10;
- char overflow = 0;
- int nbits = 0;
- int c;
- long upper_limit;
- int twos_complement_representation = 0;
- if (*p == '-')
- {
- sign = -1;
- p++;
- }
- /* Leading zero means octal. GCC uses this to output values larger
- than an int (because that would be hard in decimal). */
- if (*p == '0')
- {
- radix = 8;
- p++;
- }
- /* Skip extra zeros. */
- while (*p == '0')
- p++;
- if (sign > 0 && radix == 8 && twos_complement_bits > 0)
- {
- /* Octal, possibly signed. Check if we have enough chars for a
- negative number. */
- size_t len;
- char *p1 = p;
- while ((c = *p1) >= '0' && c < '8')
- p1++;
- len = p1 - p;
- if (len > twos_complement_bits / 3
- || (twos_complement_bits % 3 == 0
- && len == twos_complement_bits / 3))
- {
- /* Ok, we have enough characters for a signed value, check
- for signness by testing if the sign bit is set. */
- sign_bit = (twos_complement_bits % 3 + 2) % 3;
- c = *p - '0';
- if (c & (1 << sign_bit))
- {
- /* Definitely signed. */
- twos_complement_representation = 1;
- sign = -1;
- }
- }
- }
- upper_limit = LONG_MAX / radix;
- while ((c = *p++) >= '0' && c < ('0' + radix))
- {
- if (n <= upper_limit)
- {
- if (twos_complement_representation)
- {
- /* Octal, signed, twos complement representation. In
- this case, n is the corresponding absolute value. */
- if (n == 0)
- {
- long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
- n = -sn;
- }
- else
- {
- n *= radix;
- n -= c - '0';
- }
- }
- else
- {
- /* unsigned representation */
- n *= radix;
- n += c - '0'; /* FIXME this overflows anyway. */
- }
- }
- else
- overflow = 1;
- /* This depends on large values being output in octal, which is
- what GCC does. */
- if (radix == 8)
- {
- if (nbits == 0)
- {
- if (c == '0')
- /* Ignore leading zeroes. */
- ;
- else if (c == '1')
- nbits = 1;
- else if (c == '2' || c == '3')
- nbits = 2;
- else
- nbits = 3;
- }
- else
- nbits += 3;
- }
- }
- if (end)
- {
- if (c && c != end)
- {
- if (bits != NULL)
- *bits = -1;
- return 0;
- }
- }
- else
- --p;
- if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
- {
- /* We were supposed to parse a number with maximum
- TWOS_COMPLEMENT_BITS bits, but something went wrong. */
- if (bits != NULL)
- *bits = -1;
- return 0;
- }
- *pp = p;
- if (overflow)
- {
- if (nbits == 0)
- {
- /* Large decimal constants are an error (because it is hard to
- count how many bits are in them). */
- if (bits != NULL)
- *bits = -1;
- return 0;
- }
- /* -0x7f is the same as 0x80. So deal with it by adding one to
- the number of bits. Two's complement represention octals
- can't have a '-' in front. */
- if (sign == -1 && !twos_complement_representation)
- ++nbits;
- if (bits)
- *bits = nbits;
- }
- else
- {
- if (bits)
- *bits = 0;
- return n * sign;
- }
- /* It's *BITS which has the interesting information. */
- return 0;
- }
- static struct type *
- read_range_type (char **pp, int typenums[2], int type_size,
- struct objfile *objfile)
- {
- struct gdbarch *gdbarch = get_objfile_arch (objfile);
- char *orig_pp = *pp;
- int rangenums[2];
- long n2, n3;
- int n2bits, n3bits;
- int self_subrange;
- struct type *result_type;
- struct type *index_type = NULL;
- /* First comes a type we are a subrange of.
- In C it is usually 0, 1 or the type being defined. */
- if (read_type_number (pp, rangenums) != 0)
- return error_type (pp, objfile);
- self_subrange = (rangenums[0] == typenums[0] &&
- rangenums[1] == typenums[1]);
- if (**pp == '=')
- {
- *pp = orig_pp;
- index_type = read_type (pp, objfile);
- }
- /* A semicolon should now follow; skip it. */
- if (**pp == ';')
- (*pp)++;
- /* The remaining two operands are usually lower and upper bounds
- of the range. But in some special cases they mean something else. */
- n2 = read_huge_number (pp, ';', &n2bits, type_size);
- n3 = read_huge_number (pp, ';', &n3bits, type_size);
- if (n2bits == -1 || n3bits == -1)
- return error_type (pp, objfile);
- if (index_type)
- goto handle_true_range;
- /* If limits are huge, must be large integral type. */
- if (n2bits != 0 || n3bits != 0)
- {
- char got_signed = 0;
- char got_unsigned = 0;
- /* Number of bits in the type. */
- int nbits = 0;
- /* If a type size attribute has been specified, the bounds of
- the range should fit in this size. If the lower bounds needs
- more bits than the upper bound, then the type is signed. */
- if (n2bits <= type_size && n3bits <= type_size)
- {
- if (n2bits == type_size && n2bits > n3bits)
- got_signed = 1;
- else
- got_unsigned = 1;
- nbits = type_size;
- }
- /* Range from 0 to <large number> is an unsigned large integral type. */
- else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
- {
- got_unsigned = 1;
- nbits = n3bits;
- }
- /* Range from <large number> to <large number>-1 is a large signed
- integral type. Take care of the case where <large number> doesn't
- fit in a long but <large number>-1 does. */
- else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
- || (n2bits != 0 && n3bits == 0
- && (n2bits == sizeof (long) * HOST_CHAR_BIT)
- && n3 == LONG_MAX))
- {
- got_signed = 1;
- nbits = n2bits;
- }
- if (got_signed || got_unsigned)
- {
- return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
- got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
- objfile);
- }
- else
- return error_type (pp, objfile);
- }
- /* A type defined as a subrange of itself, with bounds both 0, is void. */
- if (self_subrange && n2 == 0 && n3 == 0)
- return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
- /* If n3 is zero and n2 is positive, we want a floating type, and n2
- is the width in bytes.
- Fortran programs appear to use this for complex types also. To
- distinguish between floats and complex, g77 (and others?) seem
- to use self-subranges for the complexes, and subranges of int for
- the floats.
- Also note that for complexes, g77 sets n2 to the size of one of
- the member floats, not the whole complex beast. My guess is that
- this was to work well with pre-COMPLEX versions of gdb. */
- if (n3 == 0 && n2 > 0)
- {
- struct type *float_type
- = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
- if (self_subrange)
- {
- struct type *complex_type =
- init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
- TYPE_TARGET_TYPE (complex_type) = float_type;
- return complex_type;
- }
- else
- return float_type;
- }
- /* If the upper bound is -1, it must really be an unsigned integral. */
- else if (n2 == 0 && n3 == -1)
- {
- int bits = type_size;
- if (bits <= 0)
- {
- /* We don't know its size. It is unsigned int or unsigned
- long. GCC 2.3.3 uses this for long long too, but that is
- just a GDB 3.5 compatibility hack. */
- bits = gdbarch_int_bit (gdbarch);
- }
- return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
- TYPE_FLAG_UNSIGNED, NULL, objfile);
- }
- /* Special case: char is defined (Who knows why) as a subrange of
- itself with range 0-127. */
- else if (self_subrange && n2 == 0 && n3 == 127)
- return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
- /* We used to do this only for subrange of self or subrange of int. */
- else if (n2 == 0)
- {
- /* -1 is used for the upper bound of (4 byte) "unsigned int" and
- "unsigned long", and we already checked for that,
- so don't need to test for it here. */
- if (n3 < 0)
- /* n3 actually gives the size. */
- return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
- NULL, objfile);
- /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
- unsigned n-byte integer. But do require n to be a power of
- two; we don't want 3- and 5-byte integers flying around. */
- {
- int bytes;
- unsigned long bits;
- bits = n3;
- for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
- bits >>= 8;
- if (bits == 0
- && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
- return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
- objfile);
- }
- }
- /* I think this is for Convex "long long". Since I don't know whether
- Convex sets self_subrange, I also accept that particular size regardless
- of self_subrange. */
- else if (n3 == 0 && n2 < 0
- && (self_subrange
- || n2 == -gdbarch_long_long_bit
- (gdbarch) / TARGET_CHAR_BIT))
- return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
- else if (n2 == -n3 - 1)
- {
- if (n3 == 0x7f)
- return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
- if (n3 == 0x7fff)
- return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
- if (n3 == 0x7fffffff)
- return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
- }
- /* We have a real range type on our hands. Allocate space and
- return a real pointer. */
- handle_true_range:
- if (self_subrange)
- index_type = objfile_type (objfile)->builtin_int;
- else
- index_type = *dbx_lookup_type (rangenums, objfile);
- if (index_type == NULL)
- {
- /* Does this actually ever happen? Is that why we are worrying
- about dealing with it rather than just calling error_type? */
- complaint (&symfile_complaints,
- _("base type %d of range type is not defined"), rangenums[1]);
- index_type = objfile_type (objfile)->builtin_int;
- }
- result_type
- = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
- return (result_type);
- }
- /* Read in an argument list. This is a list of types, separated by commas
- and terminated with END. Return the list of types read in, or NULL
- if there is an error. */
- static struct field *
- read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
- int *varargsp)
- {
- /* FIXME! Remove this arbitrary limit! */
- struct type *types[1024]; /* Allow for fns of 1023 parameters. */
- int n = 0, i;
- struct field *rval;
- while (**pp != end)
- {
- if (**pp != ',')
- /* Invalid argument list: no ','. */
- return NULL;
- (*pp)++;
- STABS_CONTINUE (pp, objfile);
- types[n++] = read_type (pp, objfile);
- }
- (*pp)++; /* get past `end' (the ':' character). */
- if (n == 0)
- {
- /* We should read at least the THIS parameter here. Some broken stabs
- output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
- have been present ";-16,(0,43)" reference instead. This way the
- excessive ";" marker prematurely stops the parameters parsing. */
- complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
- *varargsp = 0;
- }
- else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
- *varargsp = 1;
- else
- {
- n--;
- *varargsp = 0;
- }
- rval = (struct field *) xmalloc (n * sizeof (struct field));
- memset (rval, 0, n * sizeof (struct field));
- for (i = 0; i < n; i++)
- rval[i].type = types[i];
- *nargsp = n;
- return rval;
- }
- /* Common block handling. */
- /* List of symbols declared since the last BCOMM. This list is a tail
- of local_symbols. When ECOMM is seen, the symbols on the list
- are noted so their proper addresses can be filled in later,
- using the common block base address gotten from the assembler
- stabs. */
- static struct pending *common_block;
- static int common_block_i;
- /* Name of the current common block. We get it from the BCOMM instead of the
- ECOMM to match IBM documentation (even though IBM puts the name both places
- like everyone else). */
- static char *common_block_name;
- /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
- to remain after this function returns. */
- void
- common_block_start (char *name, struct objfile *objfile)
- {
- if (common_block_name != NULL)
- {
- complaint (&symfile_complaints,
- _("Invalid symbol data: common block within common block"));
- }
- common_block = local_symbols;
- common_block_i = local_symbols ? local_symbols->nsyms : 0;
- common_block_name = obstack_copy0 (&objfile->objfile_obstack,
- name, strlen (name));
- }
- /* Process a N_ECOMM symbol. */
- void
- common_block_end (struct objfile *objfile)
- {
- /* Symbols declared since the BCOMM are to have the common block
- start address added in when we know it. common_block and
- common_block_i point to the first symbol after the BCOMM in
- the local_symbols list; copy the list and hang it off the
- symbol for the common block name for later fixup. */
- int i;
- struct symbol *sym;
- struct pending *new = 0;
- struct pending *next;
- int j;
- if (common_block_name == NULL)
- {
- complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
- return;
- }
- sym = allocate_symbol (objfile);
- /* Note: common_block_name already saved on objfile_obstack. */
- SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
- SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
- /* Now we copy all the symbols which have been defined since the BCOMM. */
- /* Copy all the struct pendings before common_block. */
- for (next = local_symbols;
- next != NULL && next != common_block;
- next = next->next)
- {
- for (j = 0; j < next->nsyms; j++)
- add_symbol_to_list (next->symbol[j], &new);
- }
- /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
- NULL, it means copy all the local symbols (which we already did
- above). */
- if (common_block != NULL)
- for (j = common_block_i; j < common_block->nsyms; j++)
- add_symbol_to_list (common_block->symbol[j], &new);
- SYMBOL_TYPE (sym) = (struct type *) new;
- /* Should we be putting local_symbols back to what it was?
- Does it matter? */
- i = hashname (SYMBOL_LINKAGE_NAME (sym));
- SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
- global_sym_chain[i] = sym;
- common_block_name = NULL;
- }
- /* Add a common block's start address to the offset of each symbol
- declared to be in it (by being between a BCOMM/ECOMM pair that uses
- the common block name). */
- static void
- fix_common_block (struct symbol *sym, CORE_ADDR valu)
- {
- struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
- for (; next; next = next->next)
- {
- int j;
- for (j = next->nsyms - 1; j >= 0; j--)
- SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
- }
- }
- /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
- See add_undefined_type for more details. */
- static void
- add_undefined_type_noname (struct type *type, int typenums[2])
- {
- struct nat nat;
- nat.typenums[0] = typenums [0];
- nat.typenums[1] = typenums [1];
- nat.type = type;
- if (noname_undefs_length == noname_undefs_allocated)
- {
- noname_undefs_allocated *= 2;
- noname_undefs = (struct nat *)
- xrealloc ((char *) noname_undefs,
- noname_undefs_allocated * sizeof (struct nat));
- }
- noname_undefs[noname_undefs_length++] = nat;
- }
- /* Add TYPE to the UNDEF_TYPES vector.
- See add_undefined_type for more details. */
- static void
- add_undefined_type_1 (struct type *type)
- {
- if (undef_types_length == undef_types_allocated)
- {
- undef_types_allocated *= 2;
- undef_types = (struct type **)
- xrealloc ((char *) undef_types,
- undef_types_allocated * sizeof (struct type *));
- }
- undef_types[undef_types_length++] = type;
- }
- /* What about types defined as forward references inside of a small lexical
- scope? */
- /* Add a type to the list of undefined types to be checked through
- once this file has been read in.
- In practice, we actually maintain two such lists: The first list
- (UNDEF_TYPES) is used for types whose name has been provided, and
- concerns forward references (eg 'xs' or 'xu' forward references);
- the second list (NONAME_UNDEFS) is used for types whose name is
- unknown at creation time, because they were referenced through
- their type number before the actual type was declared.
- This function actually adds the given type to the proper list. */
- static void
- add_undefined_type (struct type *type, int typenums[2])
- {
- if (TYPE_TAG_NAME (type) == NULL)
- add_undefined_type_noname (type, typenums);
- else
- add_undefined_type_1 (type);
- }
- /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
- static void
- cleanup_undefined_types_noname (struct objfile *objfile)
- {
- int i;
- for (i = 0; i < noname_undefs_length; i++)
- {
- struct nat nat = noname_undefs[i];
- struct type **type;
- type = dbx_lookup_type (nat.typenums, objfile);
- if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
- {
- /* The instance flags of the undefined type are still unset,
- and needs to be copied over from the reference type.
- Since replace_type expects them to be identical, we need
- to set these flags manually before hand. */
- TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
- replace_type (nat.type, *type);
- }
- }
- noname_undefs_length = 0;
- }
- /* Go through each undefined type, see if it's still undefined, and fix it
- up if possible. We have two kinds of undefined types:
- TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
- Fix: update array length using the element bounds
- and the target type's length.
- TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
- yet defined at the time a pointer to it was made.
- Fix: Do a full lookup on the struct/union tag. */
- static void
- cleanup_undefined_types_1 (void)
- {
- struct type **type;
- /* Iterate over every undefined type, and look for a symbol whose type
- matches our undefined type. The symbol matches if:
- 1. It is a typedef in the STRUCT domain;
- 2. It has the same name, and same type code;
- 3. The instance flags are identical.
- It is important to check the instance flags, because we have seen
- examples where the debug info contained definitions such as:
- "foo_t:t30=B31=xefoo_t:"
- In this case, we have created an undefined type named "foo_t" whose
- instance flags is null (when processing "xefoo_t"), and then created
- another type with the same name, but with different instance flags
- ('B' means volatile). I think that the definition above is wrong,
- since the same type cannot be volatile and non-volatile at the same
- time, but we need to be able to cope with it when it happens. The
- approach taken here is to treat these two types as different. */
- for (type = undef_types; type < undef_types + undef_types_length; type++)
- {
- switch (TYPE_CODE (*type))
- {
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- case TYPE_CODE_ENUM:
- {
- /* Check if it has been defined since. Need to do this here
- as well as in check_typedef to deal with the (legitimate in
- C though not C++) case of several types with the same name
- in different source files. */
- if (TYPE_STUB (*type))
- {
- struct pending *ppt;
- int i;
- /* Name of the type, without "struct" or "union". */
- const char *typename = TYPE_TAG_NAME (*type);
- if (typename == NULL)
- {
- complaint (&symfile_complaints, _("need a type name"));
- break;
- }
- for (ppt = file_symbols; ppt; ppt = ppt->next)
- {
- for (i = 0; i < ppt->nsyms; i++)
- {
- struct symbol *sym = ppt->symbol[i];
- if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
- && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
- && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
- TYPE_CODE (*type))
- && (TYPE_INSTANCE_FLAGS (*type) ==
- TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
- && strcmp (SYMBOL_LINKAGE_NAME (sym),
- typename) == 0)
- replace_type (*type, SYMBOL_TYPE (sym));
- }
- }
- }
- }
- break;
- default:
- {
- complaint (&symfile_complaints,
- _("forward-referenced types left unresolved, "
- "type code %d."),
- TYPE_CODE (*type));
- }
- break;
- }
- }
- undef_types_length = 0;
- }
- /* Try to fix all the undefined types we ecountered while processing
- this unit. */
- void
- cleanup_undefined_stabs_types (struct objfile *objfile)
- {
- cleanup_undefined_types_1 ();
- cleanup_undefined_types_noname (objfile);
- }
- /* Scan through all of the global symbols defined in the object file,
- assigning values to the debugging symbols that need to be assigned
- to. Get these symbols from the minimal symbol table. */
- void
- scan_file_globals (struct objfile *objfile)
- {
- int hash;
- struct minimal_symbol *msymbol;
- struct symbol *sym, *prev;
- struct objfile *resolve_objfile;
- /* SVR4 based linkers copy referenced global symbols from shared
- libraries to the main executable.
- If we are scanning the symbols for a shared library, try to resolve
- them from the minimal symbols of the main executable first. */
- if (symfile_objfile && objfile != symfile_objfile)
- resolve_objfile = symfile_objfile;
- else
- resolve_objfile = objfile;
- while (1)
- {
- /* Avoid expensive loop through all minimal symbols if there are
- no unresolved symbols. */
- for (hash = 0; hash < HASHSIZE; hash++)
- {
- if (global_sym_chain[hash])
- break;
- }
- if (hash >= HASHSIZE)
- return;
- ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
- {
- QUIT;
- /* Skip static symbols. */
- switch (MSYMBOL_TYPE (msymbol))
- {
- case mst_file_text:
- case mst_file_data:
- case mst_file_bss:
- continue;
- default:
- break;
- }
- prev = NULL;
- /* Get the hash index and check all the symbols
- under that hash index. */
- hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
- for (sym = global_sym_chain[hash]; sym;)
- {
- if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
- SYMBOL_LINKAGE_NAME (sym)) == 0)
- {
- /* Splice this symbol out of the hash chain and
- assign the value we have to it. */
- if (prev)
- {
- SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
- }
- else
- {
- global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
- }
- /* Check to see whether we need to fix up a common block. */
- /* Note: this code might be executed several times for
- the same symbol if there are multiple references. */
- if (sym)
- {
- if (SYMBOL_CLASS (sym) == LOC_BLOCK)
- {
- fix_common_block (sym,
- MSYMBOL_VALUE_ADDRESS (resolve_objfile,
- msymbol));
- }
- else
- {
- SYMBOL_VALUE_ADDRESS (sym)
- = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
- }
- SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
- }
- if (prev)
- {
- sym = SYMBOL_VALUE_CHAIN (prev);
- }
- else
- {
- sym = global_sym_chain[hash];
- }
- }
- else
- {
- prev = sym;
- sym = SYMBOL_VALUE_CHAIN (sym);
- }
- }
- }
- if (resolve_objfile == objfile)
- break;
- resolve_objfile = objfile;
- }
- /* Change the storage class of any remaining unresolved globals to
- LOC_UNRESOLVED and remove them from the chain. */
- for (hash = 0; hash < HASHSIZE; hash++)
- {
- sym = global_sym_chain[hash];
- while (sym)
- {
- prev = sym;
- sym = SYMBOL_VALUE_CHAIN (sym);
- /* Change the symbol address from the misleading chain value
- to address zero. */
- SYMBOL_VALUE_ADDRESS (prev) = 0;
- /* Complain about unresolved common block symbols. */
- if (SYMBOL_CLASS (prev) == LOC_STATIC)
- SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
- else
- complaint (&symfile_complaints,
- _("%s: common block `%s' from "
- "global_sym_chain unresolved"),
- objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
- }
- }
- memset (global_sym_chain, 0, sizeof (global_sym_chain));
- }
- /* Initialize anything that needs initializing when starting to read
- a fresh piece of a symbol file, e.g. reading in the stuff corresponding
- to a psymtab. */
- void
- stabsread_init (void)
- {
- }
- /* Initialize anything that needs initializing when a completely new
- symbol file is specified (not just adding some symbols from another
- file, e.g. a shared library). */
- void
- stabsread_new_init (void)
- {
- /* Empty the hash table of global syms looking for values. */
- memset (global_sym_chain, 0, sizeof (global_sym_chain));
- }
- /* Initialize anything that needs initializing at the same time as
- start_symtab() is called. */
- void
- start_stabs (void)
- {
- global_stabs = NULL; /* AIX COFF */
- /* Leave FILENUM of 0 free for builtin types and this file's types. */
- n_this_object_header_files = 1;
- type_vector_length = 0;
- type_vector = (struct type **) 0;
- /* FIXME: If common_block_name is not already NULL, we should complain(). */
- common_block_name = NULL;
- }
- /* Call after end_symtab(). */
- void
- end_stabs (void)
- {
- if (type_vector)
- {
- xfree (type_vector);
- }
- type_vector = 0;
- type_vector_length = 0;
- previous_stab_code = 0;
- }
- void
- finish_global_stabs (struct objfile *objfile)
- {
- if (global_stabs)
- {
- patch_block_stabs (global_symbols, global_stabs, objfile);
- xfree (global_stabs);
- global_stabs = NULL;
- }
- }
- /* Find the end of the name, delimited by a ':', but don't match
- ObjC symbols which look like -[Foo bar::]:bla. */
- static char *
- find_name_end (char *name)
- {
- char *s = name;
- if (s[0] == '-' || *s == '+')
- {
- /* Must be an ObjC method symbol. */
- if (s[1] != '[')
- {
- error (_("invalid symbol name \"%s\""), name);
- }
- s = strchr (s, ']');
- if (s == NULL)
- {
- error (_("invalid symbol name \"%s\""), name);
- }
- return strchr (s, ':');
- }
- else
- {
- return strchr (s, ':');
- }
- }
- /* Initializer for this module. */
- void
- _initialize_stabsread (void)
- {
- rs6000_builtin_type_data = register_objfile_data ();
- undef_types_allocated = 20;
- undef_types_length = 0;
- undef_types = (struct type **)
- xmalloc (undef_types_allocated * sizeof (struct type *));
- noname_undefs_allocated = 20;
- noname_undefs_length = 0;
- noname_undefs = (struct nat *)
- xmalloc (noname_undefs_allocated * sizeof (struct nat));
- stab_register_index = register_symbol_register_impl (LOC_REGISTER,
- &stab_register_funcs);
- stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
- &stab_register_funcs);
- }