- /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
- Copyright (C) 1988-2015 Free Software Foundation, Inc.
- Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
- and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
- This file is part of GDB.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
- #include "defs.h"
- #include "frame.h"
- #include "inferior.h"
- #include "symtab.h"
- #include "value.h"
- #include "gdbcmd.h"
- #include "language.h"
- #include "gdbcore.h"
- #include "symfile.h"
- #include "objfiles.h"
- #include "gdbtypes.h"
- #include "target.h"
- #include "arch-utils.h"
- #include "regcache.h"
- #include "osabi.h"
- #include "mips-tdep.h"
- #include "block.h"
- #include "reggroups.h"
- #include "opcode/mips.h"
- #include "elf/mips.h"
- #include "elf-bfd.h"
- #include "symcat.h"
- #include "sim-regno.h"
- #include "dis-asm.h"
- #include "frame-unwind.h"
- #include "frame-base.h"
- #include "trad-frame.h"
- #include "infcall.h"
- #include "floatformat.h"
- #include "remote.h"
- #include "target-descriptions.h"
- #include "dwarf2-frame.h"
- #include "user-regs.h"
- #include "valprint.h"
- #include "ax.h"
- static const struct objfile_data *mips_pdr_data;
- static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
- static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
- ULONGEST inst);
- static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
- static int mips16_instruction_has_delay_slot (unsigned short inst,
- int mustbe32);
- static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
- CORE_ADDR addr);
- static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
- CORE_ADDR addr, int mustbe32);
- static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
- CORE_ADDR addr, int mustbe32);
- static void mips_print_float_info (struct gdbarch *, struct ui_file *,
- struct frame_info *, const char *);
- /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
- /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
- #define ST0_FR (1 << 26)
- /* The sizes of floating point registers. */
- enum
- {
- MIPS_FPU_SINGLE_REGSIZE = 4,
- MIPS_FPU_DOUBLE_REGSIZE = 8
- };
- enum
- {
- MIPS32_REGSIZE = 4,
- MIPS64_REGSIZE = 8
- };
- static const char *mips_abi_string;
- static const char *const mips_abi_strings[] = {
- "auto",
- "n32",
- "o32",
- "n64",
- "o64",
- "eabi32",
- "eabi64",
- NULL
- };
- /* For backwards compatibility we default to MIPS16. This flag is
- overridden as soon as unambiguous ELF file flags tell us the
- compressed ISA encoding used. */
- static const char mips_compression_mips16[] = "mips16";
- static const char mips_compression_micromips[] = "micromips";
- static const char *const mips_compression_strings[] =
- {
- mips_compression_mips16,
- mips_compression_micromips,
- NULL
- };
- static const char *mips_compression_string = mips_compression_mips16;
- /* The standard register names, and all the valid aliases for them. */
- struct register_alias
- {
- const char *name;
- int regnum;
- };
- /* Aliases for o32 and most other ABIs. */
- const struct register_alias mips_o32_aliases[] = {
- { "ta0", 12 },
- { "ta1", 13 },
- { "ta2", 14 },
- { "ta3", 15 }
- };
- /* Aliases for n32 and n64. */
- const struct register_alias mips_n32_n64_aliases[] = {
- { "ta0", 8 },
- { "ta1", 9 },
- { "ta2", 10 },
- { "ta3", 11 }
- };
- /* Aliases for ABI-independent registers. */
- const struct register_alias mips_register_aliases[] = {
- /* The architecture manuals specify these ABI-independent names for
- the GPRs. */
- #define R(n) { "r" #n, n }
- R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
- R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
- R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
- R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
- #undef R
- /* k0 and k1 are sometimes called these instead (for "kernel
- temp"). */
- { "kt0", 26 },
- { "kt1", 27 },
- /* This is the traditional GDB name for the CP0 status register. */
- { "sr", MIPS_PS_REGNUM },
- /* This is the traditional GDB name for the CP0 BadVAddr register. */
- { "bad", MIPS_EMBED_BADVADDR_REGNUM },
- /* This is the traditional GDB name for the FCSR. */
- { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
- };
- const struct register_alias mips_numeric_register_aliases[] = {
- #define R(n) { #n, n }
- R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
- R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
- R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
- R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
- #undef R
- };
- #ifndef MIPS_DEFAULT_FPU_TYPE
- #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
- #endif
- static int mips_fpu_type_auto = 1;
- static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
- static unsigned int mips_debug = 0;
- /* Properties (for struct target_desc) describing the g/G packet
- layout. */
- #define PROPERTY_GP32 "internal: transfers-32bit-registers"
- #define PROPERTY_GP64 "internal: transfers-64bit-registers"
- struct target_desc *mips_tdesc_gp32;
- struct target_desc *mips_tdesc_gp64;
- const struct mips_regnum *
- mips_regnum (struct gdbarch *gdbarch)
- {
- return gdbarch_tdep (gdbarch)->regnum;
- }
- static int
- mips_fpa0_regnum (struct gdbarch *gdbarch)
- {
- return mips_regnum (gdbarch)->fp0 + 12;
- }
- /* Return 1 if REGNUM refers to a floating-point general register, raw
- or cooked. Otherwise return 0. */
- static int
- mips_float_register_p (struct gdbarch *gdbarch, int regnum)
- {
- int rawnum = regnum % gdbarch_num_regs (gdbarch);
- return (rawnum >= mips_regnum (gdbarch)->fp0
- && rawnum < mips_regnum (gdbarch)->fp0 + 32);
- }
- #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
- == MIPS_ABI_EABI32 \
- || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
- #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
- (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
- #define MIPS_LAST_ARG_REGNUM(gdbarch) \
- (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
- #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
- /* Return the MIPS ABI associated with GDBARCH. */
- enum mips_abi
- mips_abi (struct gdbarch *gdbarch)
- {
- return gdbarch_tdep (gdbarch)->mips_abi;
- }
- int
- mips_isa_regsize (struct gdbarch *gdbarch)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- /* If we know how big the registers are, use that size. */
- if (tdep->register_size_valid_p)
- return tdep->register_size;
- /* Fall back to the previous behavior. */
- return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
- / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
- }
- /* Return the currently configured (or set) saved register size. */
- unsigned int
- mips_abi_regsize (struct gdbarch *gdbarch)
- {
- switch (mips_abi (gdbarch))
- {
- case MIPS_ABI_EABI32:
- case MIPS_ABI_O32:
- return 4;
- case MIPS_ABI_N32:
- case MIPS_ABI_N64:
- case MIPS_ABI_O64:
- case MIPS_ABI_EABI64:
- return 8;
- case MIPS_ABI_UNKNOWN:
- case MIPS_ABI_LAST:
- default:
- internal_error (__FILE__, __LINE__, _("bad switch"));
- }
- }
- /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
- are some functions to handle addresses associated with compressed
- code including but not limited to testing, setting, or clearing
- bit 0 of such addresses. */
- /* Return one iff compressed code is the MIPS16 instruction set. */
- static int
- is_mips16_isa (struct gdbarch *gdbarch)
- {
- return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
- }
- /* Return one iff compressed code is the microMIPS instruction set. */
- static int
- is_micromips_isa (struct gdbarch *gdbarch)
- {
- return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
- }
- /* Return one iff ADDR denotes compressed code. */
- static int
- is_compact_addr (CORE_ADDR addr)
- {
- return ((addr) & 1);
- }
- /* Return one iff ADDR denotes standard ISA code. */
- static int
- is_mips_addr (CORE_ADDR addr)
- {
- return !is_compact_addr (addr);
- }
- /* Return one iff ADDR denotes MIPS16 code. */
- static int
- is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
- {
- return is_compact_addr (addr) && is_mips16_isa (gdbarch);
- }
- /* Return one iff ADDR denotes microMIPS code. */
- static int
- is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
- {
- return is_compact_addr (addr) && is_micromips_isa (gdbarch);
- }
- /* Strip the ISA (compression) bit off from ADDR. */
- static CORE_ADDR
- unmake_compact_addr (CORE_ADDR addr)
- {
- return ((addr) & ~(CORE_ADDR) 1);
- }
- /* Add the ISA (compression) bit to ADDR. */
- static CORE_ADDR
- make_compact_addr (CORE_ADDR addr)
- {
- return ((addr) | (CORE_ADDR) 1);
- }
- /* Extern version of unmake_compact_addr; we use a separate function
- so that unmake_compact_addr can be inlined throughout this file. */
- CORE_ADDR
- mips_unmake_compact_addr (CORE_ADDR addr)
- {
- return unmake_compact_addr (addr);
- }
- /* Functions for setting and testing a bit in a minimal symbol that
- marks it as MIPS16 or microMIPS function. The MSB of the minimal
- symbol's "info" field is used for this purpose.
- gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
- "special", i.e. refers to a MIPS16 or microMIPS function, and sets
- one of the "special" bits in a minimal symbol to mark it accordingly.
- The test checks an ELF-private flag that is valid for true function
- symbols only; for synthetic symbols such as for PLT stubs that have
- no ELF-private part at all the MIPS BFD backend arranges for this
- information to be carried in the asymbol's udata field instead.
- msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
- in a minimal symbol. */
- static void
- mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
- {
- elf_symbol_type *elfsym = (elf_symbol_type *) sym;
- unsigned char st_other;
- if ((sym->flags & BSF_SYNTHETIC) == 0)
- st_other = elfsym->internal_elf_sym.st_other;
- else if ((sym->flags & BSF_FUNCTION) != 0)
- st_other = sym->udata.i;
- else
- return;
- if (ELF_ST_IS_MICROMIPS (st_other))
- {
- MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
- SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
- }
- else if (ELF_ST_IS_MIPS16 (st_other))
- {
- MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
- SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
- }
- }
- /* Return one iff MSYM refers to standard ISA code. */
- static int
- msymbol_is_mips (struct minimal_symbol *msym)
- {
- return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
- | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
- }
- /* Return one iff MSYM refers to MIPS16 code. */
- static int
- msymbol_is_mips16 (struct minimal_symbol *msym)
- {
- return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
- }
- /* Return one iff MSYM refers to microMIPS code. */
- static int
- msymbol_is_micromips (struct minimal_symbol *msym)
- {
- return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
- }
- /* Set the ISA bit in the main symbol too, complementing the corresponding
- minimal symbol setting and reflecting the run-time value of the symbol.
- The need for comes from the ISA bit having been cleared as code in
- `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
- `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
- of symbols referring to compressed code different in GDB to the values
- used by actual code. That in turn makes them evaluate incorrectly in
- expressions, producing results different to what the same expressions
- yield when compiled into the program being debugged. */
- static void
- mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
- {
- if (SYMBOL_CLASS (sym) == LOC_BLOCK)
- {
- /* We are in symbol reading so it is OK to cast away constness. */
- struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
- CORE_ADDR compact_block_start;
- struct bound_minimal_symbol msym;
- compact_block_start = BLOCK_START (block) | 1;
- msym = lookup_minimal_symbol_by_pc (compact_block_start);
- if (msym.minsym && !msymbol_is_mips (msym.minsym))
- {
- BLOCK_START (block) = compact_block_start;
- }
- }
- }
- /* XFER a value from the big/little/left end of the register.
- Depending on the size of the value it might occupy the entire
- register or just part of it. Make an allowance for this, aligning
- things accordingly. */
- static void
- mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
- int reg_num, int length,
- enum bfd_endian endian, gdb_byte *in,
- const gdb_byte *out, int buf_offset)
- {
- int reg_offset = 0;
- gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
- /* Need to transfer the left or right part of the register, based on
- the targets byte order. */
- switch (endian)
- {
- case BFD_ENDIAN_BIG:
- reg_offset = register_size (gdbarch, reg_num) - length;
- break;
- case BFD_ENDIAN_LITTLE:
- reg_offset = 0;
- break;
- case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
- reg_offset = 0;
- break;
- default:
- internal_error (__FILE__, __LINE__, _("bad switch"));
- }
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr,
- "xfer $%d, reg offset %d, buf offset %d, length %d, ",
- reg_num, reg_offset, buf_offset, length);
- if (mips_debug && out != NULL)
- {
- int i;
- fprintf_unfiltered (gdb_stdlog, "out ");
- for (i = 0; i < length; i++)
- fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
- }
- if (in != NULL)
- regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
- in + buf_offset);
- if (out != NULL)
- regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
- out + buf_offset);
- if (mips_debug && in != NULL)
- {
- int i;
- fprintf_unfiltered (gdb_stdlog, "in ");
- for (i = 0; i < length; i++)
- fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
- }
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, "\n");
- }
- /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
- compatiblity mode. A return value of 1 means that we have
- physical 64-bit registers, but should treat them as 32-bit registers. */
- static int
- mips2_fp_compat (struct frame_info *frame)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
- meaningful. */
- if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
- return 0;
- #if 0
- /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
- in all the places we deal with FP registers. PR gdb/413. */
- /* Otherwise check the FR bit in the status register - it controls
- the FP compatiblity mode. If it is clear we are in compatibility
- mode. */
- if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
- return 1;
- #endif
- return 0;
- }
- #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
- static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
- static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
- /* The list of available "set mips " and "show mips " commands. */
- static struct cmd_list_element *setmipscmdlist = NULL;
- static struct cmd_list_element *showmipscmdlist = NULL;
- /* Integer registers 0 thru 31 are handled explicitly by
- mips_register_name(). Processor specific registers 32 and above
- are listed in the following tables. */
- enum
- { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
- /* Generic MIPS. */
- static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
- "sr", "lo", "hi", "bad", "cause", "pc",
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
- "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
- "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
- "fsr", "fir",
- };
- /* Names of IDT R3041 registers. */
- static const char *mips_r3041_reg_names[] = {
- "sr", "lo", "hi", "bad", "cause", "pc",
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
- "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
- "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
- "fsr", "fir", "", /*"fp" */ "",
- "", "", "bus", "ccfg", "", "", "", "",
- "", "", "port", "cmp", "", "", "epc", "prid",
- };
- /* Names of tx39 registers. */
- static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
- "sr", "lo", "hi", "bad", "cause", "pc",
- "", "", "", "", "", "", "", "",
- "", "", "", "", "", "", "", "",
- "", "", "", "", "", "", "", "",
- "", "", "", "", "", "", "", "",
- "", "", "", "",
- "", "", "", "", "", "", "", "",
- "", "", "config", "cache", "debug", "depc", "epc",
- };
- /* Names of IRIX registers. */
- static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
- "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
- "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
- "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
- };
- /* Names of registers with Linux kernels. */
- static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
- "sr", "lo", "hi", "bad", "cause", "pc",
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
- "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
- "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
- "fsr", "fir"
- };
- /* Return the name of the register corresponding to REGNO. */
- static const char *
- mips_register_name (struct gdbarch *gdbarch, int regno)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- /* GPR names for all ABIs other than n32/n64. */
- static char *mips_gpr_names[] = {
- "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
- "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
- "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
- "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
- };
- /* GPR names for n32 and n64 ABIs. */
- static char *mips_n32_n64_gpr_names[] = {
- "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
- "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
- "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
- "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
- };
- enum mips_abi abi = mips_abi (gdbarch);
- /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
- but then don't make the raw register names visible. This (upper)
- range of user visible register numbers are the pseudo-registers.
- This approach was adopted accommodate the following scenario:
- It is possible to debug a 64-bit device using a 32-bit
- programming model. In such instances, the raw registers are
- configured to be 64-bits wide, while the pseudo registers are
- configured to be 32-bits wide. The registers that the user
- sees - the pseudo registers - match the users expectations
- given the programming model being used. */
- int rawnum = regno % gdbarch_num_regs (gdbarch);
- if (regno < gdbarch_num_regs (gdbarch))
- return "";
- /* The MIPS integer registers are always mapped from 0 to 31. The
- names of the registers (which reflects the conventions regarding
- register use) vary depending on the ABI. */
- if (0 <= rawnum && rawnum < 32)
- {
- if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
- return mips_n32_n64_gpr_names[rawnum];
- else
- return mips_gpr_names[rawnum];
- }
- else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
- return tdesc_register_name (gdbarch, rawnum);
- else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
- {
- gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
- if (tdep->mips_processor_reg_names[rawnum - 32])
- return tdep->mips_processor_reg_names[rawnum - 32];
- return "";
- }
- else
- internal_error (__FILE__, __LINE__,
- _("mips_register_name: bad register number %d"), rawnum);
- }
- /* Return the groups that a MIPS register can be categorised into. */
- static int
- mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
- struct reggroup *reggroup)
- {
- int vector_p;
- int float_p;
- int raw_p;
- int rawnum = regnum % gdbarch_num_regs (gdbarch);
- int pseudo = regnum / gdbarch_num_regs (gdbarch);
- if (reggroup == all_reggroup)
- return pseudo;
- vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
- float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
- /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
- (gdbarch), as not all architectures are multi-arch. */
- raw_p = rawnum < gdbarch_num_regs (gdbarch);
- if (gdbarch_register_name (gdbarch, regnum) == NULL
- || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
- return 0;
- if (reggroup == float_reggroup)
- return float_p && pseudo;
- if (reggroup == vector_reggroup)
- return vector_p && pseudo;
- if (reggroup == general_reggroup)
- return (!vector_p && !float_p) && pseudo;
- /* Save the pseudo registers. Need to make certain that any code
- extracting register values from a saved register cache also uses
- pseudo registers. */
- if (reggroup == save_reggroup)
- return raw_p && pseudo;
- /* Restore the same pseudo register. */
- if (reggroup == restore_reggroup)
- return raw_p && pseudo;
- return 0;
- }
- /* Return the groups that a MIPS register can be categorised into.
- This version is only used if we have a target description which
- describes real registers (and their groups). */
- static int
- mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
- struct reggroup *reggroup)
- {
- int rawnum = regnum % gdbarch_num_regs (gdbarch);
- int pseudo = regnum / gdbarch_num_regs (gdbarch);
- int ret;
- /* Only save, restore, and display the pseudo registers. Need to
- make certain that any code extracting register values from a
- saved register cache also uses pseudo registers.
- Note: saving and restoring the pseudo registers is slightly
- strange; if we have 64 bits, we should save and restore all
- 64 bits. But this is hard and has little benefit. */
- if (!pseudo)
- return 0;
- ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
- if (ret != -1)
- return ret;
- return mips_register_reggroup_p (gdbarch, regnum, reggroup);
- }
- /* Map the symbol table registers which live in the range [1 *
- gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
- registers. Take care of alignment and size problems. */
- static enum register_status
- mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
- int cookednum, gdb_byte *buf)
- {
- int rawnum = cookednum % gdbarch_num_regs (gdbarch);
- gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
- && cookednum < 2 * gdbarch_num_regs (gdbarch));
- if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
- return regcache_raw_read (regcache, rawnum, buf);
- else if (register_size (gdbarch, rawnum) >
- register_size (gdbarch, cookednum))
- {
- if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
- return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
- else
- {
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- LONGEST regval;
- enum register_status status;
- status = regcache_raw_read_signed (regcache, rawnum, ®val);
- if (status == REG_VALID)
- store_signed_integer (buf, 4, byte_order, regval);
- return status;
- }
- }
- else
- internal_error (__FILE__, __LINE__, _("bad register size"));
- }
- static void
- mips_pseudo_register_write (struct gdbarch *gdbarch,
- struct regcache *regcache, int cookednum,
- const gdb_byte *buf)
- {
- int rawnum = cookednum % gdbarch_num_regs (gdbarch);
- gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
- && cookednum < 2 * gdbarch_num_regs (gdbarch));
- if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
- regcache_raw_write (regcache, rawnum, buf);
- else if (register_size (gdbarch, rawnum) >
- register_size (gdbarch, cookednum))
- {
- if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
- regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
- else
- {
- /* Sign extend the shortened version of the register prior
- to placing it in the raw register. This is required for
- some mips64 parts in order to avoid unpredictable behavior. */
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- LONGEST regval = extract_signed_integer (buf, 4, byte_order);
- regcache_raw_write_signed (regcache, rawnum, regval);
- }
- }
- else
- internal_error (__FILE__, __LINE__, _("bad register size"));
- }
- static int
- mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
- struct agent_expr *ax, int reg)
- {
- int rawnum = reg % gdbarch_num_regs (gdbarch);
- gdb_assert (reg >= gdbarch_num_regs (gdbarch)
- && reg < 2 * gdbarch_num_regs (gdbarch));
- ax_reg_mask (ax, rawnum);
- return 0;
- }
- static int
- mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
- struct agent_expr *ax, int reg)
- {
- int rawnum = reg % gdbarch_num_regs (gdbarch);
- gdb_assert (reg >= gdbarch_num_regs (gdbarch)
- && reg < 2 * gdbarch_num_regs (gdbarch));
- if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
- {
- ax_reg (ax, rawnum);
- if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
- {
- if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
- || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
- {
- ax_const_l (ax, 32);
- ax_simple (ax, aop_lsh);
- }
- ax_const_l (ax, 32);
- ax_simple (ax, aop_rsh_signed);
- }
- }
- else
- internal_error (__FILE__, __LINE__, _("bad register size"));
- return 0;
- }
- /* Table to translate 3-bit register field to actual register number. */
- static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
- /* Heuristic_proc_start may hunt through the text section for a long
- time across a 2400 baud serial line. Allows the user to limit this
- search. */
- static int heuristic_fence_post = 0;
- /* Number of bytes of storage in the actual machine representation for
- register N. NOTE: This defines the pseudo register type so need to
- rebuild the architecture vector. */
- static int mips64_transfers_32bit_regs_p = 0;
- static void
- set_mips64_transfers_32bit_regs (char *args, int from_tty,
- struct cmd_list_element *c)
- {
- struct gdbarch_info info;
- gdbarch_info_init (&info);
- /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
- instead of relying on globals. Doing that would let generic code
- handle the search for this specific architecture. */
- if (!gdbarch_update_p (info))
- {
- mips64_transfers_32bit_regs_p = 0;
- error (_("32-bit compatibility mode not supported"));
- }
- }
- /* Convert to/from a register and the corresponding memory value. */
- /* This predicate tests for the case of an 8 byte floating point
- value that is being transferred to or from a pair of floating point
- registers each of which are (or are considered to be) only 4 bytes
- wide. */
- static int
- mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
- struct type *type)
- {
- return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
- && register_size (gdbarch, regnum) == 4
- && mips_float_register_p (gdbarch, regnum)
- && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
- }
- /* This predicate tests for the case of a value of less than 8
- bytes in width that is being transfered to or from an 8 byte
- general purpose register. */
- static int
- mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
- struct type *type)
- {
- int num_regs = gdbarch_num_regs (gdbarch);
- return (register_size (gdbarch, regnum) == 8
- && regnum % num_regs > 0 && regnum % num_regs < 32
- && TYPE_LENGTH (type) < 8);
- }
- static int
- mips_convert_register_p (struct gdbarch *gdbarch,
- int regnum, struct type *type)
- {
- return (mips_convert_register_float_case_p (gdbarch, regnum, type)
- || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
- }
- static int
- mips_register_to_value (struct frame_info *frame, int regnum,
- struct type *type, gdb_byte *to,
- int *optimizedp, int *unavailablep)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- if (mips_convert_register_float_case_p (gdbarch, regnum, type))
- {
- get_frame_register (frame, regnum + 0, to + 4);
- get_frame_register (frame, regnum + 1, to + 0);
- if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
- optimizedp, unavailablep))
- return 0;
- if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
- optimizedp, unavailablep))
- return 0;
- *optimizedp = *unavailablep = 0;
- return 1;
- }
- else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
- {
- int len = TYPE_LENGTH (type);
- CORE_ADDR offset;
- offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
- if (!get_frame_register_bytes (frame, regnum, offset, len, to,
- optimizedp, unavailablep))
- return 0;
- *optimizedp = *unavailablep = 0;
- return 1;
- }
- else
- {
- internal_error (__FILE__, __LINE__,
- _("mips_register_to_value: unrecognized case"));
- }
- }
- static void
- mips_value_to_register (struct frame_info *frame, int regnum,
- struct type *type, const gdb_byte *from)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- if (mips_convert_register_float_case_p (gdbarch, regnum, type))
- {
- put_frame_register (frame, regnum + 0, from + 4);
- put_frame_register (frame, regnum + 1, from + 0);
- }
- else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
- {
- gdb_byte fill[8];
- int len = TYPE_LENGTH (type);
- /* Sign extend values, irrespective of type, that are stored to
- a 64-bit general purpose register. (32-bit unsigned values
- are stored as signed quantities within a 64-bit register.
- When performing an operation, in compiled code, that combines
- a 32-bit unsigned value with a signed 64-bit value, a type
- conversion is first performed that zeroes out the high 32 bits.) */
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- {
- if (from[0] & 0x80)
- store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
- else
- store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
- put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
- put_frame_register_bytes (frame, regnum, 8 - len, len, from);
- }
- else
- {
- if (from[len-1] & 0x80)
- store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
- else
- store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
- put_frame_register_bytes (frame, regnum, 0, len, from);
- put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
- }
- }
- else
- {
- internal_error (__FILE__, __LINE__,
- _("mips_value_to_register: unrecognized case"));
- }
- }
- /* Return the GDB type object for the "standard" data type of data in
- register REG. */
- static struct type *
- mips_register_type (struct gdbarch *gdbarch, int regnum)
- {
- gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
- if (mips_float_register_p (gdbarch, regnum))
- {
- /* The floating-point registers raw, or cooked, always match
- mips_isa_regsize(), and also map 1:1, byte for byte. */
- if (mips_isa_regsize (gdbarch) == 4)
- return builtin_type (gdbarch)->builtin_float;
- else
- return builtin_type (gdbarch)->builtin_double;
- }
- else if (regnum < gdbarch_num_regs (gdbarch))
- {
- /* The raw or ISA registers. These are all sized according to
- the ISA regsize. */
- if (mips_isa_regsize (gdbarch) == 4)
- return builtin_type (gdbarch)->builtin_int32;
- else
- return builtin_type (gdbarch)->builtin_int64;
- }
- else
- {
- int rawnum = regnum - gdbarch_num_regs (gdbarch);
- /* The cooked or ABI registers. These are sized according to
- the ABI (with a few complications). */
- if (rawnum == mips_regnum (gdbarch)->fp_control_status
- || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
- return builtin_type (gdbarch)->builtin_int32;
- else if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
- && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
- && rawnum >= MIPS_FIRST_EMBED_REGNUM
- && rawnum <= MIPS_LAST_EMBED_REGNUM)
- /* The pseudo/cooked view of the embedded registers is always
- 32-bit. The raw view is handled below. */
- return builtin_type (gdbarch)->builtin_int32;
- else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
- /* The target, while possibly using a 64-bit register buffer,
- is only transfering 32-bits of each integer register.
- Reflect this in the cooked/pseudo (ABI) register value. */
- return builtin_type (gdbarch)->builtin_int32;
- else if (mips_abi_regsize (gdbarch) == 4)
- /* The ABI is restricted to 32-bit registers (the ISA could be
- 32- or 64-bit). */
- return builtin_type (gdbarch)->builtin_int32;
- else
- /* 64-bit ABI. */
- return builtin_type (gdbarch)->builtin_int64;
- }
- }
- /* Return the GDB type for the pseudo register REGNUM, which is the
- ABI-level view. This function is only called if there is a target
- description which includes registers, so we know precisely the
- types of hardware registers. */
- static struct type *
- mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
- {
- const int num_regs = gdbarch_num_regs (gdbarch);
- int rawnum = regnum % num_regs;
- struct type *rawtype;
- gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
- /* Absent registers are still absent. */
- rawtype = gdbarch_register_type (gdbarch, rawnum);
- if (TYPE_LENGTH (rawtype) == 0)
- return rawtype;
- if (mips_float_register_p (gdbarch, rawnum))
- /* Present the floating point registers however the hardware did;
- do not try to convert between FPU layouts. */
- return rawtype;
- /* Use pointer types for registers if we can. For n32 we can not,
- since we do not have a 64-bit pointer type. */
- if (mips_abi_regsize (gdbarch)
- == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
- {
- if (rawnum == MIPS_SP_REGNUM
- || rawnum == mips_regnum (gdbarch)->badvaddr)
- return builtin_type (gdbarch)->builtin_data_ptr;
- else if (rawnum == mips_regnum (gdbarch)->pc)
- return builtin_type (gdbarch)->builtin_func_ptr;
- }
- if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
- && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
- || rawnum == mips_regnum (gdbarch)->lo
- || rawnum == mips_regnum (gdbarch)->hi
- || rawnum == mips_regnum (gdbarch)->badvaddr
- || rawnum == mips_regnum (gdbarch)->cause
- || rawnum == mips_regnum (gdbarch)->pc
- || (mips_regnum (gdbarch)->dspacc != -1
- && rawnum >= mips_regnum (gdbarch)->dspacc
- && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
- return builtin_type (gdbarch)->builtin_int32;
- if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
- && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
- && rawnum >= MIPS_EMBED_FP0_REGNUM + 32
- && rawnum <= MIPS_LAST_EMBED_REGNUM)
- {
- /* The pseudo/cooked view of embedded registers is always
- 32-bit, even if the target transfers 64-bit values for them.
- New targets relying on XML descriptions should only transfer
- the necessary 32 bits, but older versions of GDB expected 64,
- so allow the target to provide 64 bits without interfering
- with the displayed type. */
- return builtin_type (gdbarch)->builtin_int32;
- }
- /* For all other registers, pass through the hardware type. */
- return rawtype;
- }
- /* Should the upper word of 64-bit addresses be zeroed? */
- enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
- static int
- mips_mask_address_p (struct gdbarch_tdep *tdep)
- {
- switch (mask_address_var)
- {
- case AUTO_BOOLEAN_TRUE:
- return 1;
- case AUTO_BOOLEAN_FALSE:
- return 0;
- break;
- case AUTO_BOOLEAN_AUTO:
- return tdep->default_mask_address_p;
- default:
- internal_error (__FILE__, __LINE__,
- _("mips_mask_address_p: bad switch"));
- return -1;
- }
- }
- static void
- show_mask_address (struct ui_file *file, int from_tty,
- struct cmd_list_element *c, const char *value)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
- deprecated_show_value_hack (file, from_tty, c, value);
- switch (mask_address_var)
- {
- case AUTO_BOOLEAN_TRUE:
- printf_filtered ("The 32 bit mips address mask is enabled\n");
- break;
- case AUTO_BOOLEAN_FALSE:
- printf_filtered ("The 32 bit mips address mask is disabled\n");
- break;
- case AUTO_BOOLEAN_AUTO:
- printf_filtered
- ("The 32 bit address mask is set automatically. Currently %s\n",
- mips_mask_address_p (tdep) ? "enabled" : "disabled");
- break;
- default:
- internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
- break;
- }
- }
- /* Tell if the program counter value in MEMADDR is in a standard ISA
- function. */
- int
- mips_pc_is_mips (CORE_ADDR memaddr)
- {
- struct bound_minimal_symbol sym;
- /* Flags indicating that this is a MIPS16 or microMIPS function is
- stored by elfread.c in the high bit of the info field. Use this
- to decide if the function is standard MIPS. Otherwise if bit 0
- of the address is clear, then this is a standard MIPS function. */
- sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
- if (sym.minsym)
- return msymbol_is_mips (sym.minsym);
- else
- return is_mips_addr (memaddr);
- }
- /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
- int
- mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
- {
- struct bound_minimal_symbol sym;
- /* A flag indicating that this is a MIPS16 function is stored by
- elfread.c in the high bit of the info field. Use this to decide
- if the function is MIPS16. Otherwise if bit 0 of the address is
- set, then ELF file flags will tell if this is a MIPS16 function. */
- sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
- if (sym.minsym)
- return msymbol_is_mips16 (sym.minsym);
- else
- return is_mips16_addr (gdbarch, memaddr);
- }
- /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
- int
- mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
- {
- struct bound_minimal_symbol sym;
- /* A flag indicating that this is a microMIPS function is stored by
- elfread.c in the high bit of the info field. Use this to decide
- if the function is microMIPS. Otherwise if bit 0 of the address
- is set, then ELF file flags will tell if this is a microMIPS
- function. */
- sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
- if (sym.minsym)
- return msymbol_is_micromips (sym.minsym);
- else
- return is_micromips_addr (gdbarch, memaddr);
- }
- /* Tell the ISA type of the function the program counter value in MEMADDR
- is in. */
- static enum mips_isa
- mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
- {
- struct bound_minimal_symbol sym;
- /* A flag indicating that this is a MIPS16 or a microMIPS function
- is stored by elfread.c in the high bit of the info field. Use
- this to decide if the function is MIPS16 or microMIPS or normal
- MIPS. Otherwise if bit 0 of the address is set, then ELF file
- flags will tell if this is a MIPS16 or a microMIPS function. */
- sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
- if (sym.minsym)
- {
- if (msymbol_is_micromips (sym.minsym))
- return ISA_MICROMIPS;
- else if (msymbol_is_mips16 (sym.minsym))
- return ISA_MIPS16;
- else
- return ISA_MIPS;
- }
- else
- {
- if (is_mips_addr (memaddr))
- return ISA_MIPS;
- else if (is_micromips_addr (gdbarch, memaddr))
- return ISA_MICROMIPS;
- else
- return ISA_MIPS16;
- }
- }
- /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
- The need for comes from the ISA bit having been cleared, making
- addresses in FDE, range records, etc. referring to compressed code
- different to those in line information, the symbol table and finally
- the PC register. That in turn confuses many operations. */
- static CORE_ADDR
- mips_adjust_dwarf2_addr (CORE_ADDR pc)
- {
- pc = unmake_compact_addr (pc);
- return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
- }
- /* Recalculate the line record requested so that the resulting PC has
- the ISA bit set correctly, used by DWARF-2 machinery. The need for
- this adjustment comes from some records associated with compressed
- code having the ISA bit cleared, most notably at function prologue
- ends. The ISA bit is in this context retrieved from the minimal
- symbol covering the address requested, which in turn has been
- constructed from the binary's symbol table rather than DWARF-2
- information. The correct setting of the ISA bit is required for
- breakpoint addresses to correctly match against the stop PC.
- As line entries can specify relative address adjustments we need to
- keep track of the absolute value of the last line address recorded
- in line information, so that we can calculate the actual address to
- apply the ISA bit adjustment to. We use PC for this tracking and
- keep the original address there.
- As such relative address adjustments can be odd within compressed
- code we need to keep track of the last line address with the ISA
- bit adjustment applied too, as the original address may or may not
- have had the ISA bit set. We use ADJ_PC for this tracking and keep
- the adjusted address there.
- For relative address adjustments we then use these variables to
- calculate the address intended by line information, which will be
- PC-relative, and return an updated adjustment carrying ISA bit
- information, which will be ADJ_PC-relative. For absolute address
- adjustments we just return the same address that we store in ADJ_PC
- too.
- As the first line entry can be relative to an implied address value
- of 0 we need to have the initial address set up that we store in PC
- and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
- that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
- static CORE_ADDR
- mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
- {
- static CORE_ADDR adj_pc;
- static CORE_ADDR pc;
- CORE_ADDR isa_pc;
- pc = rel ? pc + addr : addr;
- isa_pc = mips_adjust_dwarf2_addr (pc);
- addr = rel ? isa_pc - adj_pc : isa_pc;
- adj_pc = isa_pc;
- return addr;
- }
- /* Various MIPS16 thunk (aka stub or trampoline) names. */
- static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
- static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
- static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
- static const char mips_str_call_stub[] = "__call_stub_";
- static const char mips_str_fn_stub[] = "__fn_stub_";
- /* This is used as a PIC thunk prefix. */
- static const char mips_str_pic[] = ".pic.";
- /* Return non-zero if the PC is inside a call thunk (aka stub or
- trampoline) that should be treated as a temporary frame. */
- static int
- mips_in_frame_stub (CORE_ADDR pc)
- {
- CORE_ADDR start_addr;
- const char *name;
- /* Find the starting address of the function containing the PC. */
- if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
- return 0;
- /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
- if (strncmp (name, mips_str_mips16_call_stub,
- strlen (mips_str_mips16_call_stub)) == 0)
- return 1;
- /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
- if (strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
- return 1;
- /* If the PC is in __fn_stub_*, this is a call stub. */
- if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0)
- return 1;
- return 0; /* Not a stub. */
- }
- /* MIPS believes that the PC has a sign extended value. Perhaps the
- all registers should be sign extended for simplicity? */
- static CORE_ADDR
- mips_read_pc (struct regcache *regcache)
- {
- int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
- LONGEST pc;
- regcache_cooked_read_signed (regcache, regnum, &pc);
- return pc;
- }
- static CORE_ADDR
- mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
- {
- CORE_ADDR pc;
- pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
- /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
- intermediate frames. In this case we can get the caller's address
- from $ra, or if $ra contains an address within a thunk as well, then
- it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
- and thus the caller's address is in $s2. */
- if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
- {
- pc = frame_unwind_register_signed
- (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
- if (mips_in_frame_stub (pc))
- pc = frame_unwind_register_signed
- (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
- }
- return pc;
- }
- static CORE_ADDR
- mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
- {
- return frame_unwind_register_signed
- (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
- }
- /* Assuming THIS_FRAME is a dummy, return the frame ID of that
- dummy frame. The frame ID's base needs to match the TOS value
- saved by save_dummy_frame_tos(), and the PC match the dummy frame's
- breakpoint. */
- static struct frame_id
- mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
- {
- return frame_id_build
- (get_frame_register_signed (this_frame,
- gdbarch_num_regs (gdbarch)
- + MIPS_SP_REGNUM),
- get_frame_pc (this_frame));
- }
- /* Implement the "write_pc" gdbarch method. */
- void
- mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
- {
- int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
- regcache_cooked_write_unsigned (regcache, regnum, pc);
- }
- /* Fetch and return instruction from the specified location. Handle
- MIPS16/microMIPS as appropriate. */
- static ULONGEST
- mips_fetch_instruction (struct gdbarch *gdbarch,
- enum mips_isa isa, CORE_ADDR addr, int *statusp)
- {
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- gdb_byte buf[MIPS_INSN32_SIZE];
- int instlen;
- int status;
- switch (isa)
- {
- case ISA_MICROMIPS:
- case ISA_MIPS16:
- instlen = MIPS_INSN16_SIZE;
- addr = unmake_compact_addr (addr);
- break;
- case ISA_MIPS:
- instlen = MIPS_INSN32_SIZE;
- break;
- default:
- internal_error (__FILE__, __LINE__, _("invalid ISA"));
- break;
- }
- status = target_read_memory (addr, buf, instlen);
- if (statusp != NULL)
- *statusp = status;
- if (status)
- {
- if (statusp == NULL)
- memory_error (status, addr);
- return 0;
- }
- return extract_unsigned_integer (buf, instlen, byte_order);
- }
- /* These are the fields of 32 bit mips instructions. */
- #define mips32_op(x) (x >> 26)
- #define itype_op(x) (x >> 26)
- #define itype_rs(x) ((x >> 21) & 0x1f)
- #define itype_rt(x) ((x >> 16) & 0x1f)
- #define itype_immediate(x) (x & 0xffff)
- #define jtype_op(x) (x >> 26)
- #define jtype_target(x) (x & 0x03ffffff)
- #define rtype_op(x) (x >> 26)
- #define rtype_rs(x) ((x >> 21) & 0x1f)
- #define rtype_rt(x) ((x >> 16) & 0x1f)
- #define rtype_rd(x) ((x >> 11) & 0x1f)
- #define rtype_shamt(x) ((x >> 6) & 0x1f)
- #define rtype_funct(x) (x & 0x3f)
- /* MicroMIPS instruction fields. */
- #define micromips_op(x) ((x) >> 10)
- /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
- bit and the size respectively of the field extracted. */
- #define b0s4_imm(x) ((x) & 0xf)
- #define b0s5_imm(x) ((x) & 0x1f)
- #define b0s5_reg(x) ((x) & 0x1f)
- #define b0s7_imm(x) ((x) & 0x7f)
- #define b0s10_imm(x) ((x) & 0x3ff)
- #define b1s4_imm(x) (((x) >> 1) & 0xf)
- #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
- #define b2s3_cc(x) (((x) >> 2) & 0x7)
- #define b4s2_regl(x) (((x) >> 4) & 0x3)
- #define b5s5_op(x) (((x) >> 5) & 0x1f)
- #define b5s5_reg(x) (((x) >> 5) & 0x1f)
- #define b6s4_op(x) (((x) >> 6) & 0xf)
- #define b7s3_reg(x) (((x) >> 7) & 0x7)
- /* 32-bit instruction formats, B and S refer to the lowest bit and the size
- respectively of the field extracted. */
- #define b0s6_op(x) ((x) & 0x3f)
- #define b0s11_op(x) ((x) & 0x7ff)
- #define b0s12_imm(x) ((x) & 0xfff)
- #define b0s16_imm(x) ((x) & 0xffff)
- #define b0s26_imm(x) ((x) & 0x3ffffff)
- #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
- #define b11s5_reg(x) (((x) >> 11) & 0x1f)
- #define b12s4_op(x) (((x) >> 12) & 0xf)
- /* Return the size in bytes of the instruction INSN encoded in the ISA
- instruction set. */
- static int
- mips_insn_size (enum mips_isa isa, ULONGEST insn)
- {
- switch (isa)
- {
- case ISA_MICROMIPS:
- if (micromips_op (insn) == 0x1f)
- return 3 * MIPS_INSN16_SIZE;
- else if (((micromips_op (insn) & 0x4) == 0x4)
- || ((micromips_op (insn) & 0x7) == 0x0))
- return 2 * MIPS_INSN16_SIZE;
- else
- return MIPS_INSN16_SIZE;
- case ISA_MIPS16:
- if ((insn & 0xf800) == 0xf000)
- return 2 * MIPS_INSN16_SIZE;
- else
- return MIPS_INSN16_SIZE;
- case ISA_MIPS:
- return MIPS_INSN32_SIZE;
- }
- internal_error (__FILE__, __LINE__, _("invalid ISA"));
- }
- static LONGEST
- mips32_relative_offset (ULONGEST inst)
- {
- return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
- }
- /* Determine the address of the next instruction executed after the INST
- floating condition branch instruction at PC. COUNT specifies the
- number of the floating condition bits tested by the branch. */
- static CORE_ADDR
- mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
- ULONGEST inst, CORE_ADDR pc, int count)
- {
- int fcsr = mips_regnum (gdbarch)->fp_control_status;
- int cnum = (itype_rt (inst) >> 2) & (count - 1);
- int tf = itype_rt (inst) & 1;
- int mask = (1 << count) - 1;
- ULONGEST fcs;
- int cond;
- if (fcsr == -1)
- /* No way to handle; it'll most likely trap anyway. */
- return pc;
- fcs = get_frame_register_unsigned (frame, fcsr);
- cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
- if (((cond >> cnum) & mask) != mask * !tf)
- pc += mips32_relative_offset (inst);
- else
- pc += 4;
- return pc;
- }
- /* Return nonzero if the gdbarch is an Octeon series. */
- static int
- is_octeon (struct gdbarch *gdbarch)
- {
- const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
- return (info->mach == bfd_mach_mips_octeon
- || info->mach == bfd_mach_mips_octeonp
- || info->mach == bfd_mach_mips_octeon2);
- }
- /* Return true if the OP represents the Octeon's BBIT instruction. */
- static int
- is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
- {
- if (!is_octeon (gdbarch))
- return 0;
- /* BBIT0 is encoded as LWC2: 110 010. */
- /* BBIT032 is encoded as LDC2: 110 110. */
- /* BBIT1 is encoded as SWC2: 111 010. */
- /* BBIT132 is encoded as SDC2: 111 110. */
- if (op == 50 || op == 54 || op == 58 || op == 62)
- return 1;
- return 0;
- }
- /* Determine where to set a single step breakpoint while considering
- branch prediction. */
- static CORE_ADDR
- mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- unsigned long inst;
- int op;
- inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
- op = itype_op (inst);
- if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
- instruction. */
- {
- if (op >> 2 == 5)
- /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
- {
- switch (op & 0x03)
- {
- case 0: /* BEQL */
- goto equal_branch;
- case 1: /* BNEL */
- goto neq_branch;
- case 2: /* BLEZL */
- goto less_branch;
- case 3: /* BGTZL */
- goto greater_branch;
- default:
- pc += 4;
- }
- }
- else if (op == 17 && itype_rs (inst) == 8)
- /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
- pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
- else if (op == 17 && itype_rs (inst) == 9
- && (itype_rt (inst) & 2) == 0)
- /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
- pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
- else if (op == 17 && itype_rs (inst) == 10
- && (itype_rt (inst) & 2) == 0)
- /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
- pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
- else if (op == 29)
- /* JALX: 011101 */
- /* The new PC will be alternate mode. */
- {
- unsigned long reg;
- reg = jtype_target (inst) << 2;
- /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
- pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
- }
- else if (is_octeon_bbit_op (op, gdbarch))
- {
- int bit, branch_if;
- branch_if = op == 58 || op == 62;
- bit = itype_rt (inst);
- /* Take into account the *32 instructions. */
- if (op == 54 || op == 62)
- bit += 32;
- if (((get_frame_register_signed (frame,
- itype_rs (inst)) >> bit) & 1)
- == branch_if)
- pc += mips32_relative_offset (inst) + 4;
- else
- pc += 8; /* After the delay slot. */
- }
- else
- pc += 4; /* Not a branch, next instruction is easy. */
- }
- else
- { /* This gets way messy. */
- /* Further subdivide into SPECIAL, REGIMM and other. */
- switch (op & 0x07) /* Extract bits 28,27,26. */
- {
- case 0: /* SPECIAL */
- op = rtype_funct (inst);
- switch (op)
- {
- case 8: /* JR */
- case 9: /* JALR */
- /* Set PC to that address. */
- pc = get_frame_register_signed (frame, rtype_rs (inst));
- break;
- case 12: /* SYSCALL */
- {
- struct gdbarch_tdep *tdep;
- tdep = gdbarch_tdep (get_frame_arch (frame));
- if (tdep->syscall_next_pc != NULL)
- pc = tdep->syscall_next_pc (frame);
- else
- pc += 4;
- }
- break;
- default:
- pc += 4;
- }
- break; /* end SPECIAL */
- case 1: /* REGIMM */
- {
- op = itype_rt (inst); /* branch condition */
- switch (op)
- {
- case 0: /* BLTZ */
- case 2: /* BLTZL */
- case 16: /* BLTZAL */
- case 18: /* BLTZALL */
- less_branch:
- if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
- pc += mips32_relative_offset (inst) + 4;
- else
- pc += 8; /* after the delay slot */
- break;
- case 1: /* BGEZ */
- case 3: /* BGEZL */
- case 17: /* BGEZAL */
- case 19: /* BGEZALL */
- if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
- pc += mips32_relative_offset (inst) + 4;
- else
- pc += 8; /* after the delay slot */
- break;
- case 0x1c: /* BPOSGE32 */
- case 0x1e: /* BPOSGE64 */
- pc += 4;
- if (itype_rs (inst) == 0)
- {
- unsigned int pos = (op & 2) ? 64 : 32;
- int dspctl = mips_regnum (gdbarch)->dspctl;
- if (dspctl == -1)
- /* No way to handle; it'll most likely trap anyway. */
- break;
- if ((get_frame_register_unsigned (frame,
- dspctl) & 0x7f) >= pos)
- pc += mips32_relative_offset (inst);
- else
- pc += 4;
- }
- break;
- /* All of the other instructions in the REGIMM category */
- default:
- pc += 4;
- }
- }
- break; /* end REGIMM */
- case 2: /* J */
- case 3: /* JAL */
- {
- unsigned long reg;
- reg = jtype_target (inst) << 2;
- /* Upper four bits get never changed... */
- pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
- }
- break;
- case 4: /* BEQ, BEQL */
- equal_branch:
- if (get_frame_register_signed (frame, itype_rs (inst)) ==
- get_frame_register_signed (frame, itype_rt (inst)))
- pc += mips32_relative_offset (inst) + 4;
- else
- pc += 8;
- break;
- case 5: /* BNE, BNEL */
- neq_branch:
- if (get_frame_register_signed (frame, itype_rs (inst)) !=
- get_frame_register_signed (frame, itype_rt (inst)))
- pc += mips32_relative_offset (inst) + 4;
- else
- pc += 8;
- break;
- case 6: /* BLEZ, BLEZL */
- if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
- pc += mips32_relative_offset (inst) + 4;
- else
- pc += 8;
- break;
- case 7:
- default:
- greater_branch: /* BGTZ, BGTZL */
- if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
- pc += mips32_relative_offset (inst) + 4;
- else
- pc += 8;
- break;
- } /* switch */
- } /* else */
- return pc;
- } /* mips32_next_pc */
- /* Extract the 7-bit signed immediate offset from the microMIPS instruction
- INSN. */
- static LONGEST
- micromips_relative_offset7 (ULONGEST insn)
- {
- return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
- }
- /* Extract the 10-bit signed immediate offset from the microMIPS instruction
- INSN. */
- static LONGEST
- micromips_relative_offset10 (ULONGEST insn)
- {
- return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
- }
- /* Extract the 16-bit signed immediate offset from the microMIPS instruction
- INSN. */
- static LONGEST
- micromips_relative_offset16 (ULONGEST insn)
- {
- return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
- }
- /* Return the size in bytes of the microMIPS instruction at the address PC. */
- static int
- micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
- {
- ULONGEST insn;
- insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
- return mips_insn_size (ISA_MICROMIPS, insn);
- }
- /* Calculate the address of the next microMIPS instruction to execute
- after the INSN coprocessor 1 conditional branch instruction at the
- address PC. COUNT denotes the number of coprocessor condition bits
- examined by the branch. */
- static CORE_ADDR
- micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
- ULONGEST insn, CORE_ADDR pc, int count)
- {
- int fcsr = mips_regnum (gdbarch)->fp_control_status;
- int cnum = b2s3_cc (insn >> 16) & (count - 1);
- int tf = b5s5_op (insn >> 16) & 1;
- int mask = (1 << count) - 1;
- ULONGEST fcs;
- int cond;
- if (fcsr == -1)
- /* No way to handle; it'll most likely trap anyway. */
- return pc;
- fcs = get_frame_register_unsigned (frame, fcsr);
- cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
- if (((cond >> cnum) & mask) != mask * !tf)
- pc += micromips_relative_offset16 (insn);
- else
- pc += micromips_pc_insn_size (gdbarch, pc);
- return pc;
- }
- /* Calculate the address of the next microMIPS instruction to execute
- after the instruction at the address PC. */
- static CORE_ADDR
- micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- ULONGEST insn;
- insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
- pc += MIPS_INSN16_SIZE;
- switch (mips_insn_size (ISA_MICROMIPS, insn))
- {
- /* 48-bit instructions. */
- case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
- /* No branch or jump instructions in this category. */
- pc += 2 * MIPS_INSN16_SIZE;
- break;
- /* 32-bit instructions. */
- case 2 * MIPS_INSN16_SIZE:
- insn <<= 16;
- insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
- pc += MIPS_INSN16_SIZE;
- switch (micromips_op (insn >> 16))
- {
- case 0x00: /* POOL32A: bits 000000 */
- if (b0s6_op (insn) == 0x3c
- /* POOL32Axf: bits 000000 ... 111100 */
- && (b6s10_ext (insn) & 0x2bf) == 0x3c)
- /* JALR, JALR.HB: 000000 000x111100 111100 */
- /* JALRS, JALRS.HB: 000000 010x111100 111100 */
- pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
- break;
- case 0x10: /* POOL32I: bits 010000 */
- switch (b5s5_op (insn >> 16))
- {
- case 0x00: /* BLTZ: bits 010000 00000 */
- case 0x01: /* BLTZAL: bits 010000 00001 */
- case 0x11: /* BLTZALS: bits 010000 10001 */
- if (get_frame_register_signed (frame,
- b0s5_reg (insn >> 16)) < 0)
- pc += micromips_relative_offset16 (insn);
- else
- pc += micromips_pc_insn_size (gdbarch, pc);
- break;
- case 0x02: /* BGEZ: bits 010000 00010 */
- case 0x03: /* BGEZAL: bits 010000 00011 */
- case 0x13: /* BGEZALS: bits 010000 10011 */
- if (get_frame_register_signed (frame,
- b0s5_reg (insn >> 16)) >= 0)
- pc += micromips_relative_offset16 (insn);
- else
- pc += micromips_pc_insn_size (gdbarch, pc);
- break;
- case 0x04: /* BLEZ: bits 010000 00100 */
- if (get_frame_register_signed (frame,
- b0s5_reg (insn >> 16)) <= 0)
- pc += micromips_relative_offset16 (insn);
- else
- pc += micromips_pc_insn_size (gdbarch, pc);
- break;
- case 0x05: /* BNEZC: bits 010000 00101 */
- if (get_frame_register_signed (frame,
- b0s5_reg (insn >> 16)) != 0)
- pc += micromips_relative_offset16 (insn);
- break;
- case 0x06: /* BGTZ: bits 010000 00110 */
- if (get_frame_register_signed (frame,
- b0s5_reg (insn >> 16)) > 0)
- pc += micromips_relative_offset16 (insn);
- else
- pc += micromips_pc_insn_size (gdbarch, pc);
- break;
- case 0x07: /* BEQZC: bits 010000 00111 */
- if (get_frame_register_signed (frame,
- b0s5_reg (insn >> 16)) == 0)
- pc += micromips_relative_offset16 (insn);
- break;
- case 0x14: /* BC2F: bits 010000 10100 xxx00 */
- case 0x15: /* BC2T: bits 010000 10101 xxx00 */
- if (((insn >> 16) & 0x3) == 0x0)
- /* BC2F, BC2T: don't know how to handle these. */
- break;
- break;
- case 0x1a: /* BPOSGE64: bits 010000 11010 */
- case 0x1b: /* BPOSGE32: bits 010000 11011 */
- {
- unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
- int dspctl = mips_regnum (gdbarch)->dspctl;
- if (dspctl == -1)
- /* No way to handle; it'll most likely trap anyway. */
- break;
- if ((get_frame_register_unsigned (frame,
- dspctl) & 0x7f) >= pos)
- pc += micromips_relative_offset16 (insn);
- else
- pc += micromips_pc_insn_size (gdbarch, pc);
- }
- break;
- case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
- /* BC1ANY2F: bits 010000 11100 xxx01 */
- case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
- /* BC1ANY2T: bits 010000 11101 xxx01 */
- if (((insn >> 16) & 0x2) == 0x0)
- pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
- ((insn >> 16) & 0x1) + 1);
- break;
- case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
- case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
- if (((insn >> 16) & 0x3) == 0x1)
- pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
- break;
- }
- break;
- case 0x1d: /* JALS: bits 011101 */
- case 0x35: /* J: bits 110101 */
- case 0x3d: /* JAL: bits 111101 */
- pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
- break;
- case 0x25: /* BEQ: bits 100101 */
- if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
- == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
- pc += micromips_relative_offset16 (insn);
- else
- pc += micromips_pc_insn_size (gdbarch, pc);
- break;
- case 0x2d: /* BNE: bits 101101 */
- if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
- != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
- pc += micromips_relative_offset16 (insn);
- else
- pc += micromips_pc_insn_size (gdbarch, pc);
- break;
- case 0x3c: /* JALX: bits 111100 */
- pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
- break;
- }
- break;
- /* 16-bit instructions. */
- case MIPS_INSN16_SIZE:
- switch (micromips_op (insn))
- {
- case 0x11: /* POOL16C: bits 010001 */
- if ((b5s5_op (insn) & 0x1c) == 0xc)
- /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
- pc = get_frame_register_signed (frame, b0s5_reg (insn));
- else if (b5s5_op (insn) == 0x18)
- /* JRADDIUSP: bits 010001 11000 */
- pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
- break;
- case 0x23: /* BEQZ16: bits 100011 */
- {
- int rs = mips_reg3_to_reg[b7s3_reg (insn)];
- if (get_frame_register_signed (frame, rs) == 0)
- pc += micromips_relative_offset7 (insn);
- else
- pc += micromips_pc_insn_size (gdbarch, pc);
- }
- break;
- case 0x2b: /* BNEZ16: bits 101011 */
- {
- int rs = mips_reg3_to_reg[b7s3_reg (insn)];
- if (get_frame_register_signed (frame, rs) != 0)
- pc += micromips_relative_offset7 (insn);
- else
- pc += micromips_pc_insn_size (gdbarch, pc);
- }
- break;
- case 0x33: /* B16: bits 110011 */
- pc += micromips_relative_offset10 (insn);
- break;
- }
- break;
- }
- return pc;
- }
- /* Decoding the next place to set a breakpoint is irregular for the
- mips 16 variant, but fortunately, there fewer instructions. We have
- to cope ith extensions for 16 bit instructions and a pair of actual
- 32 bit instructions. We dont want to set a single step instruction
- on the extend instruction either. */
- /* Lots of mips16 instruction formats */
- /* Predicting jumps requires itype,ritype,i8type
- and their extensions extItype,extritype,extI8type. */
- enum mips16_inst_fmts
- {
- itype, /* 0 immediate 5,10 */
- ritype, /* 1 5,3,8 */
- rrtype, /* 2 5,3,3,5 */
- rritype, /* 3 5,3,3,5 */
- rrrtype, /* 4 5,3,3,3,2 */
- rriatype, /* 5 5,3,3,1,4 */
- shifttype, /* 6 5,3,3,3,2 */
- i8type, /* 7 5,3,8 */
- i8movtype, /* 8 5,3,3,5 */
- i8mov32rtype, /* 9 5,3,5,3 */
- i64type, /* 10 5,3,8 */
- ri64type, /* 11 5,3,3,5 */
- jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
- exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
- extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
- extRRItype, /* 15 5,5,5,5,3,3,5 */
- extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
- EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
- extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
- extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
- extRi64type, /* 20 5,6,5,5,3,3,5 */
- extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
- };
- /* I am heaping all the fields of the formats into one structure and
- then, only the fields which are involved in instruction extension. */
- struct upk_mips16
- {
- CORE_ADDR offset;
- unsigned int regx; /* Function in i8 type. */
- unsigned int regy;
- };
- /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
- for the bits which make up the immediate extension. */
- static CORE_ADDR
- extended_offset (unsigned int extension)
- {
- CORE_ADDR value;
- value = (extension >> 16) & 0x1f; /* Extract 15:11. */
- value = value << 6;
- value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
- value = value << 5;
- value |= extension & 0x1f; /* Extract 4:0. */
- return value;
- }
- /* Only call this function if you know that this is an extendable
- instruction. It won't malfunction, but why make excess remote memory
- references? If the immediate operands get sign extended or something,
- do it after the extension is performed. */
- /* FIXME: Every one of these cases needs to worry about sign extension
- when the offset is to be used in relative addressing. */
- static unsigned int
- fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
- {
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- gdb_byte buf[8];
- pc = unmake_compact_addr (pc); /* Clear the low order bit. */
- target_read_memory (pc, buf, 2);
- return extract_unsigned_integer (buf, 2, byte_order);
- }
- static void
- unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
- unsigned int extension,
- unsigned int inst,
- enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
- {
- CORE_ADDR offset;
- int regx;
- int regy;
- switch (insn_format)
- {
- case itype:
- {
- CORE_ADDR value;
- if (extension)
- {
- value = extended_offset ((extension << 16) | inst);
- value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
- }
- else
- {
- value = inst & 0x7ff;
- value = (value ^ 0x400) - 0x400; /* Sign-extend. */
- }
- offset = value;
- regx = -1;
- regy = -1;
- }
- break;
- case ritype:
- case i8type:
- { /* A register identifier and an offset. */
- /* Most of the fields are the same as I type but the
- immediate value is of a different length. */
- CORE_ADDR value;
- if (extension)
- {
- value = extended_offset ((extension << 16) | inst);
- value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
- }
- else
- {
- value = inst & 0xff; /* 8 bits */
- value = (value ^ 0x80) - 0x80; /* Sign-extend. */
- }
- offset = value;
- regx = (inst >> 8) & 0x07; /* i8 funct */
- regy = -1;
- break;
- }
- case jalxtype:
- {
- unsigned long value;
- unsigned int nexthalf;
- value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
- value = value << 16;
- nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
- /* Low bit still set. */
- value |= nexthalf;
- offset = value;
- regx = -1;
- regy = -1;
- break;
- }
- default:
- internal_error (__FILE__, __LINE__, _("bad switch"));
- }
- upk->offset = offset;
- upk->regx = regx;
- upk->regy = regy;
- }
- /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
- and having a signed 16-bit OFFSET. */
- static CORE_ADDR
- add_offset_16 (CORE_ADDR pc, int offset)
- {
- return pc + (offset << 1) + 2;
- }
- static CORE_ADDR
- extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
- unsigned int extension, unsigned int insn)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- int op = (insn >> 11);
- switch (op)
- {
- case 2: /* Branch */
- {
- struct upk_mips16 upk;
- unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
- pc = add_offset_16 (pc, upk.offset);
- break;
- }
- case 3: /* JAL , JALX - Watch out, these are 32 bit
- instructions. */
- {
- struct upk_mips16 upk;
- unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
- pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
- if ((insn >> 10) & 0x01) /* Exchange mode */
- pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
- else
- pc |= 0x01;
- break;
- }
- case 4: /* beqz */
- {
- struct upk_mips16 upk;
- int reg;
- unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
- reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
- if (reg == 0)
- pc = add_offset_16 (pc, upk.offset);
- else
- pc += 2;
- break;
- }
- case 5: /* bnez */
- {
- struct upk_mips16 upk;
- int reg;
- unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
- reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
- if (reg != 0)
- pc = add_offset_16 (pc, upk.offset);
- else
- pc += 2;
- break;
- }
- case 12: /* I8 Formats btez btnez */
- {
- struct upk_mips16 upk;
- int reg;
- unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
- /* upk.regx contains the opcode */
- reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
- if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
- || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
- pc = add_offset_16 (pc, upk.offset);
- else
- pc += 2;
- break;
- }
- case 29: /* RR Formats JR, JALR, JALR-RA */
- {
- struct upk_mips16 upk;
- /* upk.fmt = rrtype; */
- op = insn & 0x1f;
- if (op == 0)
- {
- int reg;
- upk.regx = (insn >> 8) & 0x07;
- upk.regy = (insn >> 5) & 0x07;
- if ((upk.regy & 1) == 0)
- reg = mips_reg3_to_reg[upk.regx];
- else
- reg = 31; /* Function return instruction. */
- pc = get_frame_register_signed (frame, reg);
- }
- else
- pc += 2;
- break;
- }
- case 30:
- /* This is an instruction extension. Fetch the real instruction
- (which follows the extension) and decode things based on
- that. */
- {
- pc += 2;
- pc = extended_mips16_next_pc (frame, pc, insn,
- fetch_mips_16 (gdbarch, pc));
- break;
- }
- default:
- {
- pc += 2;
- break;
- }
- }
- return pc;
- }
- static CORE_ADDR
- mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- unsigned int insn = fetch_mips_16 (gdbarch, pc);
- return extended_mips16_next_pc (frame, pc, 0, insn);
- }
- /* The mips_next_pc function supports single_step when the remote
- target monitor or stub is not developed enough to do a single_step.
- It works by decoding the current instruction and predicting where a
- branch will go. This isn't hard because all the data is available.
- The MIPS32, MIPS16 and microMIPS variants are quite different. */
- static CORE_ADDR
- mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- if (mips_pc_is_mips16 (gdbarch, pc))
- return mips16_next_pc (frame, pc);
- else if (mips_pc_is_micromips (gdbarch, pc))
- return micromips_next_pc (frame, pc);
- else
- return mips32_next_pc (frame, pc);
- }
- /* Return non-zero if the MIPS16 instruction INSN is a compact branch
- or jump. */
- static int
- mips16_instruction_is_compact_branch (unsigned short insn)
- {
- switch (insn & 0xf800)
- {
- case 0xe800:
- return (insn & 0x009f) == 0x80; /* JALRC/JRC */
- case 0x6000:
- return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
- case 0x2800: /* BNEZ */
- case 0x2000: /* BEQZ */
- case 0x1000: /* B */
- return 1;
- default:
- return 0;
- }
- }
- /* Return non-zero if the microMIPS instruction INSN is a compact branch
- or jump. */
- static int
- micromips_instruction_is_compact_branch (unsigned short insn)
- {
- switch (micromips_op (insn))
- {
- case 0x11: /* POOL16C: bits 010001 */
- return (b5s5_op (insn) == 0x18
- /* JRADDIUSP: bits 010001 11000 */
- || b5s5_op (insn) == 0xd);
- /* JRC: bits 010011 01101 */
- case 0x10: /* POOL32I: bits 010000 */
- return (b5s5_op (insn) & 0x1d) == 0x5;
- /* BEQZC/BNEZC: bits 010000 001x1 */
- default:
- return 0;
- }
- }
- struct mips_frame_cache
- {
- CORE_ADDR base;
- struct trad_frame_saved_reg *saved_regs;
- };
- /* Set a register's saved stack address in temp_saved_regs. If an
- address has already been set for this register, do nothing; this
- way we will only recognize the first save of a given register in a
- function prologue.
- For simplicity, save the address in both [0 .. gdbarch_num_regs) and
- [gdbarch_num_regs .. 2*gdbarch_num_regs).
- Strictly speaking, only the second range is used as it is only second
- range (the ABI instead of ISA registers) that comes into play when finding
- saved registers in a frame. */
- static void
- set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
- int regnum, CORE_ADDR offset)
- {
- if (this_cache != NULL
- && this_cache->saved_regs[regnum].addr == -1)
- {
- this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
- = offset;
- this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
- = offset;
- }
- }
- /* Fetch the immediate value from a MIPS16 instruction.
- If the previous instruction was an EXTEND, use it to extend
- the upper bits of the immediate value. This is a helper function
- for mips16_scan_prologue. */
- static int
- mips16_get_imm (unsigned short prev_inst, /* previous instruction */
- unsigned short inst, /* current instruction */
- int nbits, /* number of bits in imm field */
- int scale, /* scale factor to be applied to imm */
- int is_signed) /* is the imm field signed? */
- {
- int offset;
- if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
- {
- offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
- if (offset & 0x8000) /* check for negative extend */
- offset = 0 - (0x10000 - (offset & 0xffff));
- return offset | (inst & 0x1f);
- }
- else
- {
- int max_imm = 1 << nbits;
- int mask = max_imm - 1;
- int sign_bit = max_imm >> 1;
- offset = inst & mask;
- if (is_signed && (offset & sign_bit))
- offset = 0 - (max_imm - offset);
- return offset * scale;
- }
- }
- /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
- the associated FRAME_CACHE if not null.
- Return the address of the first instruction past the prologue. */
- static CORE_ADDR
- mips16_scan_prologue (struct gdbarch *gdbarch,
- CORE_ADDR start_pc, CORE_ADDR limit_pc,
- struct frame_info *this_frame,
- struct mips_frame_cache *this_cache)
- {
- int prev_non_prologue_insn = 0;
- int this_non_prologue_insn;
- int non_prologue_insns = 0;
- CORE_ADDR prev_pc;
- CORE_ADDR cur_pc;
- CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
- CORE_ADDR sp;
- long frame_offset = 0; /* Size of stack frame. */
- long frame_adjust = 0; /* Offset of FP from SP. */
- int frame_reg = MIPS_SP_REGNUM;
- unsigned short prev_inst = 0; /* saved copy of previous instruction. */
- unsigned inst = 0; /* current instruction */
- unsigned entry_inst = 0; /* the entry instruction */
- unsigned save_inst = 0; /* the save instruction */
- int prev_delay_slot = 0;
- int in_delay_slot;
- int reg, offset;
- int extend_bytes = 0;
- int prev_extend_bytes = 0;
- CORE_ADDR end_prologue_addr;
- /* Can be called when there's no process, and hence when there's no
- THIS_FRAME. */
- if (this_frame != NULL)
- sp = get_frame_register_signed (this_frame,
- gdbarch_num_regs (gdbarch)
- + MIPS_SP_REGNUM);
- else
- sp = 0;
- if (limit_pc > start_pc + 200)
- limit_pc = start_pc + 200;
- prev_pc = start_pc;
- /* Permit at most one non-prologue non-control-transfer instruction
- in the middle which may have been reordered by the compiler for
- optimisation. */
- for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
- {
- this_non_prologue_insn = 0;
- in_delay_slot = 0;
- /* Save the previous instruction. If it's an EXTEND, we'll extract
- the immediate offset extension from it in mips16_get_imm. */
- prev_inst = inst;
- /* Fetch and decode the instruction. */
- inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
- cur_pc, NULL);
- /* Normally we ignore extend instructions. However, if it is
- not followed by a valid prologue instruction, then this
- instruction is not part of the prologue either. We must
- remember in this case to adjust the end_prologue_addr back
- over the extend. */
- if ((inst & 0xf800) == 0xf000) /* extend */
- {
- extend_bytes = MIPS_INSN16_SIZE;
- continue;
- }
- prev_extend_bytes = extend_bytes;
- extend_bytes = 0;
- if ((inst & 0xff00) == 0x6300 /* addiu sp */
- || (inst & 0xff00) == 0xfb00) /* daddiu sp */
- {
- offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
- if (offset < 0) /* Negative stack adjustment? */
- frame_offset -= offset;
- else
- /* Exit loop if a positive stack adjustment is found, which
- usually means that the stack cleanup code in the function
- epilogue is reached. */
- break;
- }
- else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
- {
- offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
- reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
- set_reg_offset (gdbarch, this_cache, reg, sp + offset);
- }
- else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
- {
- offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
- reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
- set_reg_offset (gdbarch, this_cache, reg, sp + offset);
- }
- else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
- {
- offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
- set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
- }
- else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
- {
- offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
- set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
- }
- else if (inst == 0x673d) /* move $s1, $sp */
- {
- frame_addr = sp;
- frame_reg = 17;
- }
- else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
- {
- offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
- frame_addr = sp + offset;
- frame_reg = 17;
- frame_adjust = offset;
- }
- else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
- {
- offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
- reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
- set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
- }
- else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
- {
- offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
- reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
- set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
- }
- else if ((inst & 0xf81f) == 0xe809
- && (inst & 0x700) != 0x700) /* entry */
- entry_inst = inst; /* Save for later processing. */
- else if ((inst & 0xff80) == 0x6480) /* save */
- {
- save_inst = inst; /* Save for later processing. */
- if (prev_extend_bytes) /* extend */
- save_inst |= prev_inst << 16;
- }
- else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
- {
- /* This instruction is part of the prologue, but we don't
- need to do anything special to handle it. */
- }
- else if (mips16_instruction_has_delay_slot (inst, 0))
- /* JAL/JALR/JALX/JR */
- {
- /* The instruction in the delay slot can be a part
- of the prologue, so move forward once more. */
- in_delay_slot = 1;
- if (mips16_instruction_has_delay_slot (inst, 1))
- /* JAL/JALX */
- {
- prev_extend_bytes = MIPS_INSN16_SIZE;
- cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
- }
- }
- else
- {
- this_non_prologue_insn = 1;
- }
- non_prologue_insns += this_non_prologue_insn;
- /* A jump or branch, or enough non-prologue insns seen? If so,
- then we must have reached the end of the prologue by now. */
- if (prev_delay_slot || non_prologue_insns > 1
- || mips16_instruction_is_compact_branch (inst))
- break;
- prev_non_prologue_insn = this_non_prologue_insn;
- prev_delay_slot = in_delay_slot;
- prev_pc = cur_pc - prev_extend_bytes;
- }
- /* The entry instruction is typically the first instruction in a function,
- and it stores registers at offsets relative to the value of the old SP
- (before the prologue). But the value of the sp parameter to this
- function is the new SP (after the prologue has been executed). So we
- can't calculate those offsets until we've seen the entire prologue,
- and can calculate what the old SP must have been. */
- if (entry_inst != 0)
- {
- int areg_count = (entry_inst >> 8) & 7;
- int sreg_count = (entry_inst >> 6) & 3;
- /* The entry instruction always subtracts 32 from the SP. */
- frame_offset += 32;
- /* Now we can calculate what the SP must have been at the
- start of the function prologue. */
- sp += frame_offset;
- /* Check if a0-a3 were saved in the caller's argument save area. */
- for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
- {
- set_reg_offset (gdbarch, this_cache, reg, sp + offset);
- offset += mips_abi_regsize (gdbarch);
- }
- /* Check if the ra register was pushed on the stack. */
- offset = -4;
- if (entry_inst & 0x20)
- {
- set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
- offset -= mips_abi_regsize (gdbarch);
- }
- /* Check if the s0 and s1 registers were pushed on the stack. */
- for (reg = 16; reg < sreg_count + 16; reg++)
- {
- set_reg_offset (gdbarch, this_cache, reg, sp + offset);
- offset -= mips_abi_regsize (gdbarch);
- }
- }
- /* The SAVE instruction is similar to ENTRY, except that defined by the
- MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
- size of the frame is specified as an immediate field of instruction
- and an extended variation exists which lets additional registers and
- frame space to be specified. The instruction always treats registers
- as 32-bit so its usefulness for 64-bit ABIs is questionable. */
- if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
- {
- static int args_table[16] = {
- 0, 0, 0, 0, 1, 1, 1, 1,
- 2, 2, 2, 0, 3, 3, 4, -1,
- };
- static int astatic_table[16] = {
- 0, 1, 2, 3, 0, 1, 2, 3,
- 0, 1, 2, 4, 0, 1, 0, -1,
- };
- int aregs = (save_inst >> 16) & 0xf;
- int xsregs = (save_inst >> 24) & 0x7;
- int args = args_table[aregs];
- int astatic = astatic_table[aregs];
- long frame_size;
- if (args < 0)
- {
- warning (_("Invalid number of argument registers encoded in SAVE."));
- args = 0;
- }
- if (astatic < 0)
- {
- warning (_("Invalid number of static registers encoded in SAVE."));
- astatic = 0;
- }
- /* For standard SAVE the frame size of 0 means 128. */
- frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
- if (frame_size == 0 && (save_inst >> 16) == 0)
- frame_size = 16;
- frame_size *= 8;
- frame_offset += frame_size;
- /* Now we can calculate what the SP must have been at the
- start of the function prologue. */
- sp += frame_offset;
- /* Check if A0-A3 were saved in the caller's argument save area. */
- for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
- {
- set_reg_offset (gdbarch, this_cache, reg, sp + offset);
- offset += mips_abi_regsize (gdbarch);
- }
- offset = -4;
- /* Check if the RA register was pushed on the stack. */
- if (save_inst & 0x40)
- {
- set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
- offset -= mips_abi_regsize (gdbarch);
- }
- /* Check if the S8 register was pushed on the stack. */
- if (xsregs > 6)
- {
- set_reg_offset (gdbarch, this_cache, 30, sp + offset);
- offset -= mips_abi_regsize (gdbarch);
- xsregs--;
- }
- /* Check if S2-S7 were pushed on the stack. */
- for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
- {
- set_reg_offset (gdbarch, this_cache, reg, sp + offset);
- offset -= mips_abi_regsize (gdbarch);
- }
- /* Check if the S1 register was pushed on the stack. */
- if (save_inst & 0x10)
- {
- set_reg_offset (gdbarch, this_cache, 17, sp + offset);
- offset -= mips_abi_regsize (gdbarch);
- }
- /* Check if the S0 register was pushed on the stack. */
- if (save_inst & 0x20)
- {
- set_reg_offset (gdbarch, this_cache, 16, sp + offset);
- offset -= mips_abi_regsize (gdbarch);
- }
- /* Check if A0-A3 were pushed on the stack. */
- for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
- {
- set_reg_offset (gdbarch, this_cache, reg, sp + offset);
- offset -= mips_abi_regsize (gdbarch);
- }
- }
- if (this_cache != NULL)
- {
- this_cache->base =
- (get_frame_register_signed (this_frame,
- gdbarch_num_regs (gdbarch) + frame_reg)
- + frame_offset - frame_adjust);
- /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
- be able to get rid of the assignment below, evetually. But it's
- still needed for now. */
- this_cache->saved_regs[gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->pc]
- = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
- }
- /* Set end_prologue_addr to the address of the instruction immediately
- after the last one we scanned. Unless the last one looked like a
- non-prologue instruction (and we looked ahead), in which case use
- its address instead. */
- end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
- ? prev_pc : cur_pc - prev_extend_bytes);
- return end_prologue_addr;
- }
- /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
- Procedures that use the 32-bit instruction set are handled by the
- mips_insn32 unwinder. */
- static struct mips_frame_cache *
- mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
- {
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- struct mips_frame_cache *cache;
- if ((*this_cache) != NULL)
- return (*this_cache);
- cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
- (*this_cache) = cache;
- cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
- /* Analyze the function prologue. */
- {
- const CORE_ADDR pc = get_frame_address_in_block (this_frame);
- CORE_ADDR start_addr;
- find_pc_partial_function (pc, NULL, &start_addr, NULL);
- if (start_addr == 0)
- start_addr = heuristic_proc_start (gdbarch, pc);
- /* We can't analyze the prologue if we couldn't find the begining
- of the function. */
- if (start_addr == 0)
- return cache;
- mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
- }
- /* gdbarch_sp_regnum contains the value and not the address. */
- trad_frame_set_value (cache->saved_regs,
- gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
- cache->base);
- return (*this_cache);
- }
- static void
- mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
- struct frame_id *this_id)
- {
- struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
- this_cache);
- /* This marks the outermost frame. */
- if (info->base == 0)
- return;
- (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
- }
- static struct value *
- mips_insn16_frame_prev_register (struct frame_info *this_frame,
- void **this_cache, int regnum)
- {
- struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
- this_cache);
- return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
- }
- static int
- mips_insn16_frame_sniffer (const struct frame_unwind *self,
- struct frame_info *this_frame, void **this_cache)
- {
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- CORE_ADDR pc = get_frame_pc (this_frame);
- if (mips_pc_is_mips16 (gdbarch, pc))
- return 1;
- return 0;
- }
- static const struct frame_unwind mips_insn16_frame_unwind =
- {
- NORMAL_FRAME,
- default_frame_unwind_stop_reason,
- mips_insn16_frame_this_id,
- mips_insn16_frame_prev_register,
- NULL,
- mips_insn16_frame_sniffer
- };
- static CORE_ADDR
- mips_insn16_frame_base_address (struct frame_info *this_frame,
- void **this_cache)
- {
- struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
- this_cache);
- return info->base;
- }
- static const struct frame_base mips_insn16_frame_base =
- {
- &mips_insn16_frame_unwind,
- mips_insn16_frame_base_address,
- mips_insn16_frame_base_address,
- mips_insn16_frame_base_address
- };
- static const struct frame_base *
- mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
- {
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- CORE_ADDR pc = get_frame_pc (this_frame);
- if (mips_pc_is_mips16 (gdbarch, pc))
- return &mips_insn16_frame_base;
- else
- return NULL;
- }
- /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
- to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
- interpreted directly, and then multiplied by 4. */
- static int
- micromips_decode_imm9 (int imm)
- {
- imm = (imm ^ 0x100) - 0x100;
- if (imm > -3 && imm < 2)
- imm ^= 0x100;
- return imm << 2;
- }
- /* Analyze the function prologue from START_PC to LIMIT_PC. Return
- the address of the first instruction past the prologue. */
- static CORE_ADDR
- micromips_scan_prologue (struct gdbarch *gdbarch,
- CORE_ADDR start_pc, CORE_ADDR limit_pc,
- struct frame_info *this_frame,
- struct mips_frame_cache *this_cache)
- {
- CORE_ADDR end_prologue_addr;
- int prev_non_prologue_insn = 0;
- int frame_reg = MIPS_SP_REGNUM;
- int this_non_prologue_insn;
- int non_prologue_insns = 0;
- long frame_offset = 0; /* Size of stack frame. */
- long frame_adjust = 0; /* Offset of FP from SP. */
- CORE_ADDR frame_addr = 0; /* Value of $30, used as frame pointer. */
- int prev_delay_slot = 0;
- int in_delay_slot;
- CORE_ADDR prev_pc;
- CORE_ADDR cur_pc;
- ULONGEST insn; /* current instruction */
- CORE_ADDR sp;
- long offset;
- long sp_adj;
- long v1_off = 0; /* The assumption is LUI will replace it. */
- int reglist;
- int breg;
- int dreg;
- int sreg;
- int treg;
- int loc;
- int op;
- int s;
- int i;
- /* Can be called when there's no process, and hence when there's no
- THIS_FRAME. */
- if (this_frame != NULL)
- sp = get_frame_register_signed (this_frame,
- gdbarch_num_regs (gdbarch)
- + MIPS_SP_REGNUM);
- else
- sp = 0;
- if (limit_pc > start_pc + 200)
- limit_pc = start_pc + 200;
- prev_pc = start_pc;
- /* Permit at most one non-prologue non-control-transfer instruction
- in the middle which may have been reordered by the compiler for
- optimisation. */
- for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
- {
- this_non_prologue_insn = 0;
- in_delay_slot = 0;
- sp_adj = 0;
- loc = 0;
- insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
- loc += MIPS_INSN16_SIZE;
- switch (mips_insn_size (ISA_MICROMIPS, insn))
- {
- /* 48-bit instructions. */
- case 3 * MIPS_INSN16_SIZE:
- /* No prologue instructions in this category. */
- this_non_prologue_insn = 1;
- loc += 2 * MIPS_INSN16_SIZE;
- break;
- /* 32-bit instructions. */
- case 2 * MIPS_INSN16_SIZE:
- insn <<= 16;
- insn |= mips_fetch_instruction (gdbarch,
- ISA_MICROMIPS, cur_pc + loc, NULL);
- loc += MIPS_INSN16_SIZE;
- switch (micromips_op (insn >> 16))
- {
- /* Record $sp/$fp adjustment. */
- /* Discard (D)ADDU $gp,$jp used for PIC code. */
- case 0x0: /* POOL32A: bits 000000 */
- case 0x16: /* POOL32S: bits 010110 */
- op = b0s11_op (insn);
- sreg = b0s5_reg (insn >> 16);
- treg = b5s5_reg (insn >> 16);
- dreg = b11s5_reg (insn);
- if (op == 0x1d0
- /* SUBU: bits 000000 00111010000 */
- /* DSUBU: bits 010110 00111010000 */
- && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
- && treg == 3)
- /* (D)SUBU $sp, $v1 */
- sp_adj = v1_off;
- else if (op != 0x150
- /* ADDU: bits 000000 00101010000 */
- /* DADDU: bits 010110 00101010000 */
- || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
- this_non_prologue_insn = 1;
- break;
- case 0x8: /* POOL32B: bits 001000 */
- op = b12s4_op (insn);
- breg = b0s5_reg (insn >> 16);
- reglist = sreg = b5s5_reg (insn >> 16);
- offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
- if ((op == 0x9 || op == 0xc)
- /* SWP: bits 001000 1001 */
- /* SDP: bits 001000 1100 */
- && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
- /* S[DW]P reg,offset($sp) */
- {
- s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
- set_reg_offset (gdbarch, this_cache,
- sreg, sp + offset);
- set_reg_offset (gdbarch, this_cache,
- sreg + 1, sp + offset + s);
- }
- else if ((op == 0xd || op == 0xf)
- /* SWM: bits 001000 1101 */
- /* SDM: bits 001000 1111 */
- && breg == MIPS_SP_REGNUM
- /* SWM reglist,offset($sp) */
- && ((reglist >= 1 && reglist <= 9)
- || (reglist >= 16 && reglist <= 25)))
- {
- int sreglist = min(reglist & 0xf, 8);
- s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
- for (i = 0; i < sreglist; i++)
- set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
- if ((reglist & 0xf) > 8)
- set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
- if ((reglist & 0x10) == 0x10)
- set_reg_offset (gdbarch, this_cache,
- MIPS_RA_REGNUM, sp + s * i++);
- }
- else
- this_non_prologue_insn = 1;
- break;
- /* Record $sp/$fp adjustment. */
- /* Discard (D)ADDIU $gp used for PIC code. */
- case 0xc: /* ADDIU: bits 001100 */
- case 0x17: /* DADDIU: bits 010111 */
- sreg = b0s5_reg (insn >> 16);
- dreg = b5s5_reg (insn >> 16);
- offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
- if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
- /* (D)ADDIU $sp, imm */
- sp_adj = offset;
- else if (sreg == MIPS_SP_REGNUM && dreg == 30)
- /* (D)ADDIU $fp, $sp, imm */
- {
- frame_addr = sp + offset;
- frame_adjust = offset;
- frame_reg = 30;
- }
- else if (sreg != 28 || dreg != 28)
- /* (D)ADDIU $gp, imm */
- this_non_prologue_insn = 1;
- break;
- /* LUI $v1 is used for larger $sp adjustments. */
- /* Discard LUI $gp used for PIC code. */
- case 0x10: /* POOL32I: bits 010000 */
- if (b5s5_op (insn >> 16) == 0xd
- /* LUI: bits 010000 001101 */
- && b0s5_reg (insn >> 16) == 3)
- /* LUI $v1, imm */
- v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
- else if (b5s5_op (insn >> 16) != 0xd
- /* LUI: bits 010000 001101 */
- || b0s5_reg (insn >> 16) != 28)
- /* LUI $gp, imm */
- this_non_prologue_insn = 1;
- break;
- /* ORI $v1 is used for larger $sp adjustments. */
- case 0x14: /* ORI: bits 010100 */
- sreg = b0s5_reg (insn >> 16);
- dreg = b5s5_reg (insn >> 16);
- if (sreg == 3 && dreg == 3)
- /* ORI $v1, imm */
- v1_off |= b0s16_imm (insn);
- else
- this_non_prologue_insn = 1;
- break;
- case 0x26: /* SWC1: bits 100110 */
- case 0x2e: /* SDC1: bits 101110 */
- breg = b0s5_reg (insn >> 16);
- if (breg != MIPS_SP_REGNUM)
- /* S[DW]C1 reg,offset($sp) */
- this_non_prologue_insn = 1;
- break;
- case 0x36: /* SD: bits 110110 */
- case 0x3e: /* SW: bits 111110 */
- breg = b0s5_reg (insn >> 16);
- sreg = b5s5_reg (insn >> 16);
- offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
- if (breg == MIPS_SP_REGNUM)
- /* S[DW] reg,offset($sp) */
- set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
- else
- this_non_prologue_insn = 1;
- break;
- default:
- /* The instruction in the delay slot can be a part
- of the prologue, so move forward once more. */
- if (micromips_instruction_has_delay_slot (insn, 0))
- in_delay_slot = 1;
- else
- this_non_prologue_insn = 1;
- break;
- }
- insn >>= 16;
- break;
- /* 16-bit instructions. */
- case MIPS_INSN16_SIZE:
- switch (micromips_op (insn))
- {
- case 0x3: /* MOVE: bits 000011 */
- sreg = b0s5_reg (insn);
- dreg = b5s5_reg (insn);
- if (sreg == MIPS_SP_REGNUM && dreg == 30)
- /* MOVE $fp, $sp */
- {
- frame_addr = sp;
- frame_reg = 30;
- }
- else if ((sreg & 0x1c) != 0x4)
- /* MOVE reg, $a0-$a3 */
- this_non_prologue_insn = 1;
- break;
- case 0x11: /* POOL16C: bits 010001 */
- if (b6s4_op (insn) == 0x5)
- /* SWM: bits 010001 0101 */
- {
- offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
- reglist = b4s2_regl (insn);
- for (i = 0; i <= reglist; i++)
- set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
- set_reg_offset (gdbarch, this_cache,
- MIPS_RA_REGNUM, sp + 4 * i++);
- }
- else
- this_non_prologue_insn = 1;
- break;
- case 0x13: /* POOL16D: bits 010011 */
- if ((insn & 0x1) == 0x1)
- /* ADDIUSP: bits 010011 1 */
- sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
- else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
- /* ADDIUS5: bits 010011 0 */
- /* ADDIUS5 $sp, imm */
- sp_adj = (b1s4_imm (insn) ^ 8) - 8;
- else
- this_non_prologue_insn = 1;
- break;
- case 0x32: /* SWSP: bits 110010 */
- offset = b0s5_imm (insn) << 2;
- sreg = b5s5_reg (insn);
- set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
- break;
- default:
- /* The instruction in the delay slot can be a part
- of the prologue, so move forward once more. */
- if (micromips_instruction_has_delay_slot (insn << 16, 0))
- in_delay_slot = 1;
- else
- this_non_prologue_insn = 1;
- break;
- }
- break;
- }
- if (sp_adj < 0)
- frame_offset -= sp_adj;
- non_prologue_insns += this_non_prologue_insn;
- /* A jump or branch, enough non-prologue insns seen or positive
- stack adjustment? If so, then we must have reached the end
- of the prologue by now. */
- if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
- || micromips_instruction_is_compact_branch (insn))
- break;
- prev_non_prologue_insn = this_non_prologue_insn;
- prev_delay_slot = in_delay_slot;
- prev_pc = cur_pc;
- }
- if (this_cache != NULL)
- {
- this_cache->base =
- (get_frame_register_signed (this_frame,
- gdbarch_num_regs (gdbarch) + frame_reg)
- + frame_offset - frame_adjust);
- /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
- be able to get rid of the assignment below, evetually. But it's
- still needed for now. */
- this_cache->saved_regs[gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->pc]
- = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
- }
- /* Set end_prologue_addr to the address of the instruction immediately
- after the last one we scanned. Unless the last one looked like a
- non-prologue instruction (and we looked ahead), in which case use
- its address instead. */
- end_prologue_addr
- = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
- return end_prologue_addr;
- }
- /* Heuristic unwinder for procedures using microMIPS instructions.
- Procedures that use the 32-bit instruction set are handled by the
- mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
- static struct mips_frame_cache *
- mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
- {
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- struct mips_frame_cache *cache;
- if ((*this_cache) != NULL)
- return (*this_cache);
- cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
- (*this_cache) = cache;
- cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
- /* Analyze the function prologue. */
- {
- const CORE_ADDR pc = get_frame_address_in_block (this_frame);
- CORE_ADDR start_addr;
- find_pc_partial_function (pc, NULL, &start_addr, NULL);
- if (start_addr == 0)
- start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
- /* We can't analyze the prologue if we couldn't find the begining
- of the function. */
- if (start_addr == 0)
- return cache;
- micromips_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
- }
- /* gdbarch_sp_regnum contains the value and not the address. */
- trad_frame_set_value (cache->saved_regs,
- gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
- cache->base);
- return (*this_cache);
- }
- static void
- mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
- struct frame_id *this_id)
- {
- struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
- this_cache);
- /* This marks the outermost frame. */
- if (info->base == 0)
- return;
- (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
- }
- static struct value *
- mips_micro_frame_prev_register (struct frame_info *this_frame,
- void **this_cache, int regnum)
- {
- struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
- this_cache);
- return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
- }
- static int
- mips_micro_frame_sniffer (const struct frame_unwind *self,
- struct frame_info *this_frame, void **this_cache)
- {
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- CORE_ADDR pc = get_frame_pc (this_frame);
- if (mips_pc_is_micromips (gdbarch, pc))
- return 1;
- return 0;
- }
- static const struct frame_unwind mips_micro_frame_unwind =
- {
- NORMAL_FRAME,
- default_frame_unwind_stop_reason,
- mips_micro_frame_this_id,
- mips_micro_frame_prev_register,
- NULL,
- mips_micro_frame_sniffer
- };
- static CORE_ADDR
- mips_micro_frame_base_address (struct frame_info *this_frame,
- void **this_cache)
- {
- struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
- this_cache);
- return info->base;
- }
- static const struct frame_base mips_micro_frame_base =
- {
- &mips_micro_frame_unwind,
- mips_micro_frame_base_address,
- mips_micro_frame_base_address,
- mips_micro_frame_base_address
- };
- static const struct frame_base *
- mips_micro_frame_base_sniffer (struct frame_info *this_frame)
- {
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- CORE_ADDR pc = get_frame_pc (this_frame);
- if (mips_pc_is_micromips (gdbarch, pc))
- return &mips_micro_frame_base;
- else
- return NULL;
- }
- /* Mark all the registers as unset in the saved_regs array
- of THIS_CACHE. Do nothing if THIS_CACHE is null. */
- static void
- reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
- {
- if (this_cache == NULL || this_cache->saved_regs == NULL)
- return;
- {
- const int num_regs = gdbarch_num_regs (gdbarch);
- int i;
- for (i = 0; i < num_regs; i++)
- {
- this_cache->saved_regs[i].addr = -1;
- }
- }
- }
- /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
- the associated FRAME_CACHE if not null.
- Return the address of the first instruction past the prologue. */
- static CORE_ADDR
- mips32_scan_prologue (struct gdbarch *gdbarch,
- CORE_ADDR start_pc, CORE_ADDR limit_pc,
- struct frame_info *this_frame,
- struct mips_frame_cache *this_cache)
- {
- int prev_non_prologue_insn;
- int this_non_prologue_insn;
- int non_prologue_insns;
- CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
- frame-pointer. */
- int prev_delay_slot;
- CORE_ADDR prev_pc;
- CORE_ADDR cur_pc;
- CORE_ADDR sp;
- long frame_offset;
- int frame_reg = MIPS_SP_REGNUM;
- CORE_ADDR end_prologue_addr;
- int seen_sp_adjust = 0;
- int load_immediate_bytes = 0;
- int in_delay_slot;
- int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
- /* Can be called when there's no process, and hence when there's no
- THIS_FRAME. */
- if (this_frame != NULL)
- sp = get_frame_register_signed (this_frame,
- gdbarch_num_regs (gdbarch)
- + MIPS_SP_REGNUM);
- else
- sp = 0;
- if (limit_pc > start_pc + 200)
- limit_pc = start_pc + 200;
- restart:
- prev_non_prologue_insn = 0;
- non_prologue_insns = 0;
- prev_delay_slot = 0;
- prev_pc = start_pc;
- /* Permit at most one non-prologue non-control-transfer instruction
- in the middle which may have been reordered by the compiler for
- optimisation. */
- frame_offset = 0;
- for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
- {
- unsigned long inst, high_word;
- long offset;
- int reg;
- this_non_prologue_insn = 0;
- in_delay_slot = 0;
- /* Fetch the instruction. */
- inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
- cur_pc, NULL);
- /* Save some code by pre-extracting some useful fields. */
- high_word = (inst >> 16) & 0xffff;
- offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
- reg = high_word & 0x1f;
- if (high_word == 0x27bd /* addiu $sp,$sp,-i */
- || high_word == 0x23bd /* addi $sp,$sp,-i */
- || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
- {
- if (offset < 0) /* Negative stack adjustment? */
- frame_offset -= offset;
- else
- /* Exit loop if a positive stack adjustment is found, which
- usually means that the stack cleanup code in the function
- epilogue is reached. */
- break;
- seen_sp_adjust = 1;
- }
- else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
- && !regsize_is_64_bits)
- {
- set_reg_offset (gdbarch, this_cache, reg, sp + offset);
- }
- else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
- && regsize_is_64_bits)
- {
- /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
- set_reg_offset (gdbarch, this_cache, reg, sp + offset);
- }
- else if (high_word == 0x27be) /* addiu $30,$sp,size */
- {
- /* Old gcc frame, r30 is virtual frame pointer. */
- if (offset != frame_offset)
- frame_addr = sp + offset;
- else if (this_frame && frame_reg == MIPS_SP_REGNUM)
- {
- unsigned alloca_adjust;
- frame_reg = 30;
- frame_addr = get_frame_register_signed
- (this_frame, gdbarch_num_regs (gdbarch) + 30);
- frame_offset = 0;
- alloca_adjust = (unsigned) (frame_addr - (sp + offset));
- if (alloca_adjust > 0)
- {
- /* FP > SP + frame_size. This may be because of
- an alloca or somethings similar. Fix sp to
- "pre-alloca" value, and try again. */
- sp += alloca_adjust;
- /* Need to reset the status of all registers. Otherwise,
- we will hit a guard that prevents the new address
- for each register to be recomputed during the second
- pass. */
- reset_saved_regs (gdbarch, this_cache);
- goto restart;
- }
- }
- }
- /* move $30,$sp. With different versions of gas this will be either
- `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
- Accept any one of these. */
- else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
- {
- /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
- if (this_frame && frame_reg == MIPS_SP_REGNUM)
- {
- unsigned alloca_adjust;
- frame_reg = 30;
- frame_addr = get_frame_register_signed
- (this_frame, gdbarch_num_regs (gdbarch) + 30);
- alloca_adjust = (unsigned) (frame_addr - sp);
- if (alloca_adjust > 0)
- {
- /* FP > SP + frame_size. This may be because of
- an alloca or somethings similar. Fix sp to
- "pre-alloca" value, and try again. */
- sp = frame_addr;
- /* Need to reset the status of all registers. Otherwise,
- we will hit a guard that prevents the new address
- for each register to be recomputed during the second
- pass. */
- reset_saved_regs (gdbarch, this_cache);
- goto restart;
- }
- }
- }
- else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
- && !regsize_is_64_bits)
- {
- set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
- }
- else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
- || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
- || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
- || high_word == 0x3c1c /* lui $gp,n */
- || high_word == 0x279c /* addiu $gp,$gp,n */
- || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
- || inst == 0x033ce021 /* addu $gp,$t9,$gp */
- )
- {
- /* These instructions are part of the prologue, but we don't
- need to do anything special to handle them. */
- }
- /* The instructions below load $at or $t0 with an immediate
- value in preparation for a stack adjustment via
- subu $sp,$sp,[$at,$t0]. These instructions could also
- initialize a local variable, so we accept them only before
- a stack adjustment instruction was seen. */
- else if (!seen_sp_adjust
- && !prev_delay_slot
- && (high_word == 0x3c01 /* lui $at,n */
- || high_word == 0x3c08 /* lui $t0,n */
- || high_word == 0x3421 /* ori $at,$at,n */
- || high_word == 0x3508 /* ori $t0,$t0,n */
- || high_word == 0x3401 /* ori $at,$zero,n */
- || high_word == 0x3408 /* ori $t0,$zero,n */
- ))
- {
- load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
- }
- /* Check for branches and jumps. The instruction in the delay
- slot can be a part of the prologue, so move forward once more. */
- else if (mips32_instruction_has_delay_slot (gdbarch, inst))
- {
- in_delay_slot = 1;
- }
- /* This instruction is not an instruction typically found
- in a prologue, so we must have reached the end of the
- prologue. */
- else
- {
- this_non_prologue_insn = 1;
- }
- non_prologue_insns += this_non_prologue_insn;
- /* A jump or branch, or enough non-prologue insns seen? If so,
- then we must have reached the end of the prologue by now. */
- if (prev_delay_slot || non_prologue_insns > 1)
- break;
- prev_non_prologue_insn = this_non_prologue_insn;
- prev_delay_slot = in_delay_slot;
- prev_pc = cur_pc;
- }
- if (this_cache != NULL)
- {
- this_cache->base =
- (get_frame_register_signed (this_frame,
- gdbarch_num_regs (gdbarch) + frame_reg)
- + frame_offset);
- /* FIXME: brobecker/2004-09-15: We should be able to get rid of
- this assignment below, eventually. But it's still needed
- for now. */
- this_cache->saved_regs[gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->pc]
- = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
- + MIPS_RA_REGNUM];
- }
- /* Set end_prologue_addr to the address of the instruction immediately
- after the last one we scanned. Unless the last one looked like a
- non-prologue instruction (and we looked ahead), in which case use
- its address instead. */
- end_prologue_addr
- = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
- /* In a frameless function, we might have incorrectly
- skipped some load immediate instructions. Undo the skipping
- if the load immediate was not followed by a stack adjustment. */
- if (load_immediate_bytes && !seen_sp_adjust)
- end_prologue_addr -= load_immediate_bytes;
- return end_prologue_addr;
- }
- /* Heuristic unwinder for procedures using 32-bit instructions (covers
- both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
- instructions (a.k.a. MIPS16) are handled by the mips_insn16
- unwinder. Likewise microMIPS and the mips_micro unwinder. */
- static struct mips_frame_cache *
- mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
- {
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- struct mips_frame_cache *cache;
- if ((*this_cache) != NULL)
- return (*this_cache);
- cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
- (*this_cache) = cache;
- cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
- /* Analyze the function prologue. */
- {
- const CORE_ADDR pc = get_frame_address_in_block (this_frame);
- CORE_ADDR start_addr;
- find_pc_partial_function (pc, NULL, &start_addr, NULL);
- if (start_addr == 0)
- start_addr = heuristic_proc_start (gdbarch, pc);
- /* We can't analyze the prologue if we couldn't find the begining
- of the function. */
- if (start_addr == 0)
- return cache;
- mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
- }
- /* gdbarch_sp_regnum contains the value and not the address. */
- trad_frame_set_value (cache->saved_regs,
- gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
- cache->base);
- return (*this_cache);
- }
- static void
- mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
- struct frame_id *this_id)
- {
- struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
- this_cache);
- /* This marks the outermost frame. */
- if (info->base == 0)
- return;
- (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
- }
- static struct value *
- mips_insn32_frame_prev_register (struct frame_info *this_frame,
- void **this_cache, int regnum)
- {
- struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
- this_cache);
- return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
- }
- static int
- mips_insn32_frame_sniffer (const struct frame_unwind *self,
- struct frame_info *this_frame, void **this_cache)
- {
- CORE_ADDR pc = get_frame_pc (this_frame);
- if (mips_pc_is_mips (pc))
- return 1;
- return 0;
- }
- static const struct frame_unwind mips_insn32_frame_unwind =
- {
- NORMAL_FRAME,
- default_frame_unwind_stop_reason,
- mips_insn32_frame_this_id,
- mips_insn32_frame_prev_register,
- NULL,
- mips_insn32_frame_sniffer
- };
- static CORE_ADDR
- mips_insn32_frame_base_address (struct frame_info *this_frame,
- void **this_cache)
- {
- struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
- this_cache);
- return info->base;
- }
- static const struct frame_base mips_insn32_frame_base =
- {
- &mips_insn32_frame_unwind,
- mips_insn32_frame_base_address,
- mips_insn32_frame_base_address,
- mips_insn32_frame_base_address
- };
- static const struct frame_base *
- mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
- {
- CORE_ADDR pc = get_frame_pc (this_frame);
- if (mips_pc_is_mips (pc))
- return &mips_insn32_frame_base;
- else
- return NULL;
- }
- static struct trad_frame_cache *
- mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
- {
- CORE_ADDR pc;
- CORE_ADDR start_addr;
- CORE_ADDR stack_addr;
- struct trad_frame_cache *this_trad_cache;
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- int num_regs = gdbarch_num_regs (gdbarch);
- if ((*this_cache) != NULL)
- return (*this_cache);
- this_trad_cache = trad_frame_cache_zalloc (this_frame);
- (*this_cache) = this_trad_cache;
- /* The return address is in the link register. */
- trad_frame_set_reg_realreg (this_trad_cache,
- gdbarch_pc_regnum (gdbarch),
- num_regs + MIPS_RA_REGNUM);
- /* Frame ID, since it's a frameless / stackless function, no stack
- space is allocated and SP on entry is the current SP. */
- pc = get_frame_pc (this_frame);
- find_pc_partial_function (pc, NULL, &start_addr, NULL);
- stack_addr = get_frame_register_signed (this_frame,
- num_regs + MIPS_SP_REGNUM);
- trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
- /* Assume that the frame's base is the same as the
- stack-pointer. */
- trad_frame_set_this_base (this_trad_cache, stack_addr);
- return this_trad_cache;
- }
- static void
- mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
- struct frame_id *this_id)
- {
- struct trad_frame_cache *this_trad_cache
- = mips_stub_frame_cache (this_frame, this_cache);
- trad_frame_get_id (this_trad_cache, this_id);
- }
- static struct value *
- mips_stub_frame_prev_register (struct frame_info *this_frame,
- void **this_cache, int regnum)
- {
- struct trad_frame_cache *this_trad_cache
- = mips_stub_frame_cache (this_frame, this_cache);
- return trad_frame_get_register (this_trad_cache, this_frame, regnum);
- }
- static int
- mips_stub_frame_sniffer (const struct frame_unwind *self,
- struct frame_info *this_frame, void **this_cache)
- {
- gdb_byte dummy[4];
- struct obj_section *s;
- CORE_ADDR pc = get_frame_address_in_block (this_frame);
- struct bound_minimal_symbol msym;
- /* Use the stub unwinder for unreadable code. */
- if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
- return 1;
- if (in_plt_section (pc) || in_mips_stubs_section (pc))
- return 1;
- /* Calling a PIC function from a non-PIC function passes through a
- stub. The stub for foo is named ".pic.foo". */
- msym = lookup_minimal_symbol_by_pc (pc);
- if (msym.minsym != NULL
- && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
- && strncmp (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic.", 5) == 0)
- return 1;
- return 0;
- }
- static const struct frame_unwind mips_stub_frame_unwind =
- {
- NORMAL_FRAME,
- default_frame_unwind_stop_reason,
- mips_stub_frame_this_id,
- mips_stub_frame_prev_register,
- NULL,
- mips_stub_frame_sniffer
- };
- static CORE_ADDR
- mips_stub_frame_base_address (struct frame_info *this_frame,
- void **this_cache)
- {
- struct trad_frame_cache *this_trad_cache
- = mips_stub_frame_cache (this_frame, this_cache);
- return trad_frame_get_this_base (this_trad_cache);
- }
- static const struct frame_base mips_stub_frame_base =
- {
- &mips_stub_frame_unwind,
- mips_stub_frame_base_address,
- mips_stub_frame_base_address,
- mips_stub_frame_base_address
- };
- static const struct frame_base *
- mips_stub_frame_base_sniffer (struct frame_info *this_frame)
- {
- if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
- return &mips_stub_frame_base;
- else
- return NULL;
- }
- /* mips_addr_bits_remove - remove useless address bits */
- static CORE_ADDR
- mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
- /* This hack is a work-around for existing boards using PMON, the
- simulator, and any other 64-bit targets that doesn't have true
- 64-bit addressing. On these targets, the upper 32 bits of
- addresses are ignored by the hardware. Thus, the PC or SP are
- likely to have been sign extended to all 1s by instruction
- sequences that load 32-bit addresses. For example, a typical
- piece of code that loads an address is this:
- lui $r2, <upper 16 bits>
- ori $r2, <lower 16 bits>
- But the lui sign-extends the value such that the upper 32 bits
- may be all 1s. The workaround is simply to mask off these
- bits. In the future, gcc may be changed to support true 64-bit
- addressing, and this masking will have to be disabled. */
- return addr &= 0xffffffffUL;
- else
- return addr;
- }
- /* Checks for an atomic sequence of instructions beginning with a LL/LLD
- instruction and ending with a SC/SCD instruction. If such a sequence
- is found, attempt to step through it. A breakpoint is placed at the end of
- the sequence. */
- /* Instructions used during single-stepping of atomic sequences, standard
- ISA version. */
- #define LL_OPCODE 0x30
- #define LLD_OPCODE 0x34
- #define SC_OPCODE 0x38
- #define SCD_OPCODE 0x3c
- static int
- mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
- struct address_space *aspace, CORE_ADDR pc)
- {
- CORE_ADDR breaks[2] = {-1, -1};
- CORE_ADDR loc = pc;
- CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
- ULONGEST insn;
- int insn_count;
- int index;
- int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
- const int atomic_sequence_length = 16; /* Instruction sequence length. */
- insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
- /* Assume all atomic sequences start with a ll/lld instruction. */
- if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
- return 0;
- /* Assume that no atomic sequence is longer than "atomic_sequence_length"
- instructions. */
- for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
- {
- int is_branch = 0;
- loc += MIPS_INSN32_SIZE;
- insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
- /* Assume that there is at most one branch in the atomic
- sequence. If a branch is found, put a breakpoint in its
- destination address. */
- switch (itype_op (insn))
- {
- case 0: /* SPECIAL */
- if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
- return 0; /* fallback to the standard single-step code. */
- break;
- case 1: /* REGIMM */
- is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
- || ((itype_rt (insn) & 0x1e) == 0
- && itype_rs (insn) == 0)); /* BPOSGE* */
- break;
- case 2: /* J */
- case 3: /* JAL */
- return 0; /* fallback to the standard single-step code. */
- case 4: /* BEQ */
- case 5: /* BNE */
- case 6: /* BLEZ */
- case 7: /* BGTZ */
- case 20: /* BEQL */
- case 21: /* BNEL */
- case 22: /* BLEZL */
- case 23: /* BGTTL */
- is_branch = 1;
- break;
- case 17: /* COP1 */
- is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
- && (itype_rt (insn) & 0x2) == 0);
- if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
- break;
- /* Fall through. */
- case 18: /* COP2 */
- case 19: /* COP3 */
- is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
- break;
- }
- if (is_branch)
- {
- branch_bp = loc + mips32_relative_offset (insn) + 4;
- if (last_breakpoint >= 1)
- return 0; /* More than one branch found, fallback to the
- standard single-step code. */
- breaks[1] = branch_bp;
- last_breakpoint++;
- }
- if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
- break;
- }
- /* Assume that the atomic sequence ends with a sc/scd instruction. */
- if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
- return 0;
- loc += MIPS_INSN32_SIZE;
- /* Insert a breakpoint right after the end of the atomic sequence. */
- breaks[0] = loc;
- /* Check for duplicated breakpoints. Check also for a breakpoint
- placed (branch instruction's destination) in the atomic sequence. */
- if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
- last_breakpoint = 0;
- /* Effectively inserts the breakpoints. */
- for (index = 0; index <= last_breakpoint; index++)
- insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
- return 1;
- }
- static int
- micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
- struct address_space *aspace,
- CORE_ADDR pc)
- {
- const int atomic_sequence_length = 16; /* Instruction sequence length. */
- int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
- CORE_ADDR breaks[2] = {-1, -1};
- CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
- destination. */
- CORE_ADDR loc = pc;
- int sc_found = 0;
- ULONGEST insn;
- int insn_count;
- int index;
- /* Assume all atomic sequences start with a ll/lld instruction. */
- insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
- if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
- return 0;
- loc += MIPS_INSN16_SIZE;
- insn <<= 16;
- insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
- if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
- return 0;
- loc += MIPS_INSN16_SIZE;
- /* Assume all atomic sequences end with an sc/scd instruction. Assume
- that no atomic sequence is longer than "atomic_sequence_length"
- instructions. */
- for (insn_count = 0;
- !sc_found && insn_count < atomic_sequence_length;
- ++insn_count)
- {
- int is_branch = 0;
- insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
- loc += MIPS_INSN16_SIZE;
- /* Assume that there is at most one conditional branch in the
- atomic sequence. If a branch is found, put a breakpoint in
- its destination address. */
- switch (mips_insn_size (ISA_MICROMIPS, insn))
- {
- /* 48-bit instructions. */
- case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
- loc += 2 * MIPS_INSN16_SIZE;
- break;
- /* 32-bit instructions. */
- case 2 * MIPS_INSN16_SIZE:
- switch (micromips_op (insn))
- {
- case 0x10: /* POOL32I: bits 010000 */
- if ((b5s5_op (insn) & 0x18) != 0x0
- /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
- /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
- && (b5s5_op (insn) & 0x1d) != 0x11
- /* BLTZALS, BGEZALS: bits 010000 100x1 */
- && ((b5s5_op (insn) & 0x1e) != 0x14
- || (insn & 0x3) != 0x0)
- /* BC2F, BC2T: bits 010000 1010x xxx00 */
- && (b5s5_op (insn) & 0x1e) != 0x1a
- /* BPOSGE64, BPOSGE32: bits 010000 1101x */
- && ((b5s5_op (insn) & 0x1e) != 0x1c
- || (insn & 0x3) != 0x0)
- /* BC1F, BC1T: bits 010000 1110x xxx00 */
- && ((b5s5_op (insn) & 0x1c) != 0x1c
- || (insn & 0x3) != 0x1))
- /* BC1ANY*: bits 010000 111xx xxx01 */
- break;
- /* Fall through. */
- case 0x25: /* BEQ: bits 100101 */
- case 0x2d: /* BNE: bits 101101 */
- insn <<= 16;
- insn |= mips_fetch_instruction (gdbarch,
- ISA_MICROMIPS, loc, NULL);
- branch_bp = (loc + MIPS_INSN16_SIZE
- + micromips_relative_offset16 (insn));
- is_branch = 1;
- break;
- case 0x00: /* POOL32A: bits 000000 */
- insn <<= 16;
- insn |= mips_fetch_instruction (gdbarch,
- ISA_MICROMIPS, loc, NULL);
- if (b0s6_op (insn) != 0x3c
- /* POOL32Axf: bits 000000 ... 111100 */
- || (b6s10_ext (insn) & 0x2bf) != 0x3c)
- /* JALR, JALR.HB: 000000 000x111100 111100 */
- /* JALRS, JALRS.HB: 000000 010x111100 111100 */
- break;
- /* Fall through. */
- case 0x1d: /* JALS: bits 011101 */
- case 0x35: /* J: bits 110101 */
- case 0x3d: /* JAL: bits 111101 */
- case 0x3c: /* JALX: bits 111100 */
- return 0; /* Fall back to the standard single-step code. */
- case 0x18: /* POOL32C: bits 011000 */
- if ((b12s4_op (insn) & 0xb) == 0xb)
- /* SC, SCD: bits 011000 1x11 */
- sc_found = 1;
- break;
- }
- loc += MIPS_INSN16_SIZE;
- break;
- /* 16-bit instructions. */
- case MIPS_INSN16_SIZE:
- switch (micromips_op (insn))
- {
- case 0x23: /* BEQZ16: bits 100011 */
- case 0x2b: /* BNEZ16: bits 101011 */
- branch_bp = loc + micromips_relative_offset7 (insn);
- is_branch = 1;
- break;
- case 0x11: /* POOL16C: bits 010001 */
- if ((b5s5_op (insn) & 0x1c) != 0xc
- /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
- && b5s5_op (insn) != 0x18)
- /* JRADDIUSP: bits 010001 11000 */
- break;
- return 0; /* Fall back to the standard single-step code. */
- case 0x33: /* B16: bits 110011 */
- return 0; /* Fall back to the standard single-step code. */
- }
- break;
- }
- if (is_branch)
- {
- if (last_breakpoint >= 1)
- return 0; /* More than one branch found, fallback to the
- standard single-step code. */
- breaks[1] = branch_bp;
- last_breakpoint++;
- }
- }
- if (!sc_found)
- return 0;
- /* Insert a breakpoint right after the end of the atomic sequence. */
- breaks[0] = loc;
- /* Check for duplicated breakpoints. Check also for a breakpoint
- placed (branch instruction's destination) in the atomic sequence */
- if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
- last_breakpoint = 0;
- /* Effectively inserts the breakpoints. */
- for (index = 0; index <= last_breakpoint; index++)
- insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
- return 1;
- }
- static int
- deal_with_atomic_sequence (struct gdbarch *gdbarch,
- struct address_space *aspace, CORE_ADDR pc)
- {
- if (mips_pc_is_mips (pc))
- return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
- else if (mips_pc_is_micromips (gdbarch, pc))
- return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
- else
- return 0;
- }
- /* mips_software_single_step() is called just before we want to resume
- the inferior, if we want to single-step it but there is no hardware
- or kernel single-step support (MIPS on GNU/Linux for example). We find
- the target of the coming instruction and breakpoint it. */
- int
- mips_software_single_step (struct frame_info *frame)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- struct address_space *aspace = get_frame_address_space (frame);
- CORE_ADDR pc, next_pc;
- pc = get_frame_pc (frame);
- if (deal_with_atomic_sequence (gdbarch, aspace, pc))
- return 1;
- next_pc = mips_next_pc (frame, pc);
- insert_single_step_breakpoint (gdbarch, aspace, next_pc);
- return 1;
- }
- /* Test whether the PC points to the return instruction at the
- end of a function. */
- static int
- mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
- {
- ULONGEST insn;
- ULONGEST hint;
- /* This used to check for MIPS16, but this piece of code is never
- called for MIPS16 functions. And likewise microMIPS ones. */
- gdb_assert (mips_pc_is_mips (pc));
- insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
- hint = 0x7c0;
- return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
- }
- /* This fencepost looks highly suspicious to me. Removing it also
- seems suspicious as it could affect remote debugging across serial
- lines. */
- static CORE_ADDR
- heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
- {
- CORE_ADDR start_pc;
- CORE_ADDR fence;
- int instlen;
- int seen_adjsp = 0;
- struct inferior *inf;
- pc = gdbarch_addr_bits_remove (gdbarch, pc);
- start_pc = pc;
- fence = start_pc - heuristic_fence_post;
- if (start_pc == 0)
- return 0;
- if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
- fence = VM_MIN_ADDRESS;
- instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
- inf = current_inferior ();
- /* Search back for previous return. */
- for (start_pc -= instlen;; start_pc -= instlen)
- if (start_pc < fence)
- {
- /* It's not clear to me why we reach this point when
- stop_soon, but with this test, at least we
- don't print out warnings for every child forked (eg, on
- decstation). 22apr93 rich@cygnus.com. */
- if (inf->control.stop_soon == NO_STOP_QUIETLY)
- {
- static int blurb_printed = 0;
- warning (_("GDB can't find the start of the function at %s."),
- paddress (gdbarch, pc));
- if (!blurb_printed)
- {
- /* This actually happens frequently in embedded
- development, when you first connect to a board
- and your stack pointer and pc are nowhere in
- particular. This message needs to give people
- in that situation enough information to
- determine that it's no big deal. */
- printf_filtered ("\n\
- GDB is unable to find the start of the function at %s\n\
- and thus can't determine the size of that function's stack frame.\n\
- This means that GDB may be unable to access that stack frame, or\n\
- the frames below it.\n\
- This problem is most likely caused by an invalid program counter or\n\
- stack pointer.\n\
- However, if you think GDB should simply search farther back\n\
- from %s for code which looks like the beginning of a\n\
- function, you can increase the range of the search using the `set\n\
- heuristic-fence-post' command.\n",
- paddress (gdbarch, pc), paddress (gdbarch, pc));
- blurb_printed = 1;
- }
- }
- return 0;
- }
- else if (mips_pc_is_mips16 (gdbarch, start_pc))
- {
- unsigned short inst;
- /* On MIPS16, any one of the following is likely to be the
- start of a function:
- extend save
- save
- entry
- addiu sp,-n
- daddiu sp,-n
- extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
- inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
- if ((inst & 0xff80) == 0x6480) /* save */
- {
- if (start_pc - instlen >= fence)
- {
- inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
- start_pc - instlen, NULL);
- if ((inst & 0xf800) == 0xf000) /* extend */
- start_pc -= instlen;
- }
- break;
- }
- else if (((inst & 0xf81f) == 0xe809
- && (inst & 0x700) != 0x700) /* entry */
- || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
- || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
- || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
- break;
- else if ((inst & 0xff00) == 0x6300 /* addiu sp */
- || (inst & 0xff00) == 0xfb00) /* daddiu sp */
- seen_adjsp = 1;
- else
- seen_adjsp = 0;
- }
- else if (mips_pc_is_micromips (gdbarch, start_pc))
- {
- ULONGEST insn;
- int stop = 0;
- long offset;
- int dreg;
- int sreg;
- /* On microMIPS, any one of the following is likely to be the
- start of a function:
- ADDIUSP -imm
- (D)ADDIU $sp, -imm
- LUI $gp, imm */
- insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
- switch (micromips_op (insn))
- {
- case 0xc: /* ADDIU: bits 001100 */
- case 0x17: /* DADDIU: bits 010111 */
- sreg = b0s5_reg (insn);
- dreg = b5s5_reg (insn);
- insn <<= 16;
- insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
- pc + MIPS_INSN16_SIZE, NULL);
- offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
- if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
- /* (D)ADDIU $sp, imm */
- && offset < 0)
- stop = 1;
- break;
- case 0x10: /* POOL32I: bits 010000 */
- if (b5s5_op (insn) == 0xd
- /* LUI: bits 010000 001101 */
- && b0s5_reg (insn >> 16) == 28)
- /* LUI $gp, imm */
- stop = 1;
- break;
- case 0x13: /* POOL16D: bits 010011 */
- if ((insn & 0x1) == 0x1)
- /* ADDIUSP: bits 010011 1 */
- {
- offset = micromips_decode_imm9 (b1s9_imm (insn));
- if (offset < 0)
- /* ADDIUSP -imm */
- stop = 1;
- }
- else
- /* ADDIUS5: bits 010011 0 */
- {
- dreg = b5s5_reg (insn);
- offset = (b1s4_imm (insn) ^ 8) - 8;
- if (dreg == MIPS_SP_REGNUM && offset < 0)
- /* ADDIUS5 $sp, -imm */
- stop = 1;
- }
- break;
- }
- if (stop)
- break;
- }
- else if (mips_about_to_return (gdbarch, start_pc))
- {
- /* Skip return and its delay slot. */
- start_pc += 2 * MIPS_INSN32_SIZE;
- break;
- }
- return start_pc;
- }
- struct mips_objfile_private
- {
- bfd_size_type size;
- char *contents;
- };
- /* According to the current ABI, should the type be passed in a
- floating-point register (assuming that there is space)? When there
- is no FPU, FP are not even considered as possible candidates for
- FP registers and, consequently this returns false - forces FP
- arguments into integer registers. */
- static int
- fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
- struct type *arg_type)
- {
- return ((typecode == TYPE_CODE_FLT
- || (MIPS_EABI (gdbarch)
- && (typecode == TYPE_CODE_STRUCT
- || typecode == TYPE_CODE_UNION)
- && TYPE_NFIELDS (arg_type) == 1
- && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
- == TYPE_CODE_FLT))
- && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
- }
- /* On o32, argument passing in GPRs depends on the alignment of the type being
- passed. Return 1 if this type must be aligned to a doubleword boundary. */
- static int
- mips_type_needs_double_align (struct type *type)
- {
- enum type_code typecode = TYPE_CODE (type);
- if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
- return 1;
- else if (typecode == TYPE_CODE_STRUCT)
- {
- if (TYPE_NFIELDS (type) < 1)
- return 0;
- return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
- }
- else if (typecode == TYPE_CODE_UNION)
- {
- int i, n;
- n = TYPE_NFIELDS (type);
- for (i = 0; i < n; i++)
- if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
- return 1;
- return 0;
- }
- return 0;
- }
- /* Adjust the address downward (direction of stack growth) so that it
- is correctly aligned for a new stack frame. */
- static CORE_ADDR
- mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
- {
- return align_down (addr, 16);
- }
- /* Implement the "push_dummy_code" gdbarch method. */
- static CORE_ADDR
- mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
- CORE_ADDR funaddr, struct value **args,
- int nargs, struct type *value_type,
- CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
- struct regcache *regcache)
- {
- static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
- CORE_ADDR nop_addr;
- CORE_ADDR bp_slot;
- /* Reserve enough room on the stack for our breakpoint instruction. */
- bp_slot = sp - sizeof (nop_insn);
- /* Return to microMIPS mode if calling microMIPS code to avoid
- triggering an address error exception on processors that only
- support microMIPS execution. */
- *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
- ? make_compact_addr (bp_slot) : bp_slot);
- /* The breakpoint layer automatically adjusts the address of
- breakpoints inserted in a branch delay slot. With enough
- bad luck, the 4 bytes located just before our breakpoint
- instruction could look like a branch instruction, and thus
- trigger the adjustement, and break the function call entirely.
- So, we reserve those 4 bytes and write a nop instruction
- to prevent that from happening. */
- nop_addr = bp_slot - sizeof (nop_insn);
- write_memory (nop_addr, nop_insn, sizeof (nop_insn));
- sp = mips_frame_align (gdbarch, nop_addr);
- /* Inferior resumes at the function entry point. */
- *real_pc = funaddr;
- return sp;
- }
- static CORE_ADDR
- mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
- struct regcache *regcache, CORE_ADDR bp_addr,
- int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
- {
- int argreg;
- int float_argreg;
- int argnum;
- int len = 0;
- int stack_offset = 0;
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR func_addr = find_function_addr (function, NULL);
- int regsize = mips_abi_regsize (gdbarch);
- /* For shared libraries, "t9" needs to point at the function
- address. */
- regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
- /* Set the return address register to point to the entry point of
- the program, where a breakpoint lies in wait. */
- regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
- /* First ensure that the stack and structure return address (if any)
- are properly aligned. The stack has to be at least 64-bit
- aligned even on 32-bit machines, because doubles must be 64-bit
- aligned. For n32 and n64, stack frames need to be 128-bit
- aligned, so we round to this widest known alignment. */
- sp = align_down (sp, 16);
- struct_addr = align_down (struct_addr, 16);
- /* Now make space on the stack for the args. We allocate more
- than necessary for EABI, because the first few arguments are
- passed in registers, but that's OK. */
- for (argnum = 0; argnum < nargs; argnum++)
- len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
- sp -= align_up (len, 16);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
- paddress (gdbarch, sp), (long) align_up (len, 16));
- /* Initialize the integer and float register pointers. */
- argreg = MIPS_A0_REGNUM;
- float_argreg = mips_fpa0_regnum (gdbarch);
- /* The struct_return pointer occupies the first parameter-passing reg. */
- if (struct_return)
- {
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_eabi_push_dummy_call: "
- "struct_return reg=%d %s\n",
- argreg, paddress (gdbarch, struct_addr));
- regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
- }
- /* Now load as many as possible of the first arguments into
- registers, and push the rest onto the stack. Loop thru args
- from first to last. */
- for (argnum = 0; argnum < nargs; argnum++)
- {
- const gdb_byte *val;
- gdb_byte valbuf[MAX_REGISTER_SIZE];
- struct value *arg = args[argnum];
- struct type *arg_type = check_typedef (value_type (arg));
- int len = TYPE_LENGTH (arg_type);
- enum type_code typecode = TYPE_CODE (arg_type);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_eabi_push_dummy_call: %d len=%d type=%d",
- argnum + 1, len, (int) typecode);
- /* The EABI passes structures that do not fit in a register by
- reference. */
- if (len > regsize
- && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
- {
- store_unsigned_integer (valbuf, regsize, byte_order,
- value_address (arg));
- typecode = TYPE_CODE_PTR;
- len = regsize;
- val = valbuf;
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " push");
- }
- else
- val = value_contents (arg);
- /* 32-bit ABIs always start floating point arguments in an
- even-numbered floating point register. Round the FP register
- up before the check to see if there are any FP registers
- left. Non MIPS_EABI targets also pass the FP in the integer
- registers so also round up normal registers. */
- if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
- {
- if ((float_argreg & 1))
- float_argreg++;
- }
- /* Floating point arguments passed in registers have to be
- treated specially. On 32-bit architectures, doubles
- are passed in register pairs; the even register gets
- the low word, and the odd register gets the high word.
- On non-EABI processors, the first two floating point arguments are
- also copied to general registers, because MIPS16 functions
- don't use float registers for arguments. This duplication of
- arguments in general registers can't hurt non-MIPS16 functions
- because those registers are normally skipped. */
- /* MIPS_EABI squeezes a struct that contains a single floating
- point value into an FP register instead of pushing it onto the
- stack. */
- if (fp_register_arg_p (gdbarch, typecode, arg_type)
- && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
- {
- /* EABI32 will pass doubles in consecutive registers, even on
- 64-bit cores. At one time, we used to check the size of
- `float_argreg' to determine whether or not to pass doubles
- in consecutive registers, but this is not sufficient for
- making the ABI determination. */
- if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
- {
- int low_offset = gdbarch_byte_order (gdbarch)
- == BFD_ENDIAN_BIG ? 4 : 0;
- long regval;
- /* Write the low word of the double to the even register(s). */
- regval = extract_signed_integer (val + low_offset,
- 4, byte_order);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
- float_argreg, phex (regval, 4));
- regcache_cooked_write_signed (regcache, float_argreg++, regval);
- /* Write the high word of the double to the odd register(s). */
- regval = extract_signed_integer (val + 4 - low_offset,
- 4, byte_order);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
- float_argreg, phex (regval, 4));
- regcache_cooked_write_signed (regcache, float_argreg++, regval);
- }
- else
- {
- /* This is a floating point value that fits entirely
- in a single register. */
- /* On 32 bit ABI's the float_argreg is further adjusted
- above to ensure that it is even register aligned. */
- LONGEST regval = extract_signed_integer (val, len, byte_order);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
- float_argreg, phex (regval, len));
- regcache_cooked_write_signed (regcache, float_argreg++, regval);
- }
- }
- else
- {
- /* Copy the argument to general registers or the stack in
- register-sized pieces. Large arguments are split between
- registers and stack. */
- /* Note: structs whose size is not a multiple of regsize
- are treated specially: Irix cc passes
- them in registers where gcc sometimes puts them on the
- stack. For maximum compatibility, we will put them in
- both places. */
- int odd_sized_struct = (len > regsize && len % regsize != 0);
- /* Note: Floating-point values that didn't fit into an FP
- register are only written to memory. */
- while (len > 0)
- {
- /* Remember if the argument was written to the stack. */
- int stack_used_p = 0;
- int partial_len = (len < regsize ? len : regsize);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
- partial_len);
- /* Write this portion of the argument to the stack. */
- if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
- || odd_sized_struct
- || fp_register_arg_p (gdbarch, typecode, arg_type))
- {
- /* Should shorter than int integer values be
- promoted to int before being stored? */
- int longword_offset = 0;
- CORE_ADDR addr;
- stack_used_p = 1;
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- {
- if (regsize == 8
- && (typecode == TYPE_CODE_INT
- || typecode == TYPE_CODE_PTR
- || typecode == TYPE_CODE_FLT) && len <= 4)
- longword_offset = regsize - len;
- else if ((typecode == TYPE_CODE_STRUCT
- || typecode == TYPE_CODE_UNION)
- && TYPE_LENGTH (arg_type) < regsize)
- longword_offset = regsize - len;
- }
- if (mips_debug)
- {
- fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
- paddress (gdbarch, stack_offset));
- fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
- paddress (gdbarch, longword_offset));
- }
- addr = sp + stack_offset + longword_offset;
- if (mips_debug)
- {
- int i;
- fprintf_unfiltered (gdb_stdlog, " @%s ",
- paddress (gdbarch, addr));
- for (i = 0; i < partial_len; i++)
- {
- fprintf_unfiltered (gdb_stdlog, "%02x",
- val[i] & 0xff);
- }
- }
- write_memory (addr, val, partial_len);
- }
- /* Note!!! This is NOT an else clause. Odd sized
- structs may go thru BOTH paths. Floating point
- arguments will not. */
- /* Write this portion of the argument to a general
- purpose register. */
- if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
- && !fp_register_arg_p (gdbarch, typecode, arg_type))
- {
- LONGEST regval =
- extract_signed_integer (val, partial_len, byte_order);
- if (mips_debug)
- fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
- argreg,
- phex (regval, regsize));
- regcache_cooked_write_signed (regcache, argreg, regval);
- argreg++;
- }
- len -= partial_len;
- val += partial_len;
- /* Compute the offset into the stack at which we will
- copy the next parameter.
- In the new EABI (and the NABI32), the stack_offset
- only needs to be adjusted when it has been used. */
- if (stack_used_p)
- stack_offset += align_up (partial_len, regsize);
- }
- }
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, "\n");
- }
- regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
- /* Return adjusted stack pointer. */
- return sp;
- }
- /* Determine the return value convention being used. */
- static enum return_value_convention
- mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
- struct type *type, struct regcache *regcache,
- gdb_byte *readbuf, const gdb_byte *writebuf)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- int fp_return_type = 0;
- int offset, regnum, xfer;
- if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
- return RETURN_VALUE_STRUCT_CONVENTION;
- /* Floating point type? */
- if (tdep->mips_fpu_type != MIPS_FPU_NONE)
- {
- if (TYPE_CODE (type) == TYPE_CODE_FLT)
- fp_return_type = 1;
- /* Structs with a single field of float type
- are returned in a floating point register. */
- if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
- || TYPE_CODE (type) == TYPE_CODE_UNION)
- && TYPE_NFIELDS (type) == 1)
- {
- struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
- if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
- fp_return_type = 1;
- }
- }
- if (fp_return_type)
- {
- /* A floating-point value belongs in the least significant part
- of FP0/FP1. */
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
- regnum = mips_regnum (gdbarch)->fp0;
- }
- else
- {
- /* An integer value goes in V0/V1. */
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
- regnum = MIPS_V0_REGNUM;
- }
- for (offset = 0;
- offset < TYPE_LENGTH (type);
- offset += mips_abi_regsize (gdbarch), regnum++)
- {
- xfer = mips_abi_regsize (gdbarch);
- if (offset + xfer > TYPE_LENGTH (type))
- xfer = TYPE_LENGTH (type) - offset;
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + regnum, xfer,
- gdbarch_byte_order (gdbarch), readbuf, writebuf,
- offset);
- }
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- /* N32/N64 ABI stuff. */
- /* Search for a naturally aligned double at OFFSET inside a struct
- ARG_TYPE. The N32 / N64 ABIs pass these in floating point
- registers. */
- static int
- mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
- int offset)
- {
- int i;
- if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
- return 0;
- if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
- return 0;
- if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
- return 0;
- for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
- {
- int pos;
- struct type *field_type;
- /* We're only looking at normal fields. */
- if (field_is_static (&TYPE_FIELD (arg_type, i))
- || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
- continue;
- /* If we have gone past the offset, there is no double to pass. */
- pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
- if (pos > offset)
- return 0;
- field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
- /* If this field is entirely before the requested offset, go
- on to the next one. */
- if (pos + TYPE_LENGTH (field_type) <= offset)
- continue;
- /* If this is our special aligned double, we can stop. */
- if (TYPE_CODE (field_type) == TYPE_CODE_FLT
- && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
- return 1;
- /* This field starts at or before the requested offset, and
- overlaps it. If it is a structure, recurse inwards. */
- return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
- }
- return 0;
- }
- static CORE_ADDR
- mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
- struct regcache *regcache, CORE_ADDR bp_addr,
- int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
- {
- int argreg;
- int float_argreg;
- int argnum;
- int len = 0;
- int stack_offset = 0;
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR func_addr = find_function_addr (function, NULL);
- /* For shared libraries, "t9" needs to point at the function
- address. */
- regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
- /* Set the return address register to point to the entry point of
- the program, where a breakpoint lies in wait. */
- regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
- /* First ensure that the stack and structure return address (if any)
- are properly aligned. The stack has to be at least 64-bit
- aligned even on 32-bit machines, because doubles must be 64-bit
- aligned. For n32 and n64, stack frames need to be 128-bit
- aligned, so we round to this widest known alignment. */
- sp = align_down (sp, 16);
- struct_addr = align_down (struct_addr, 16);
- /* Now make space on the stack for the args. */
- for (argnum = 0; argnum < nargs; argnum++)
- len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
- sp -= align_up (len, 16);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
- paddress (gdbarch, sp), (long) align_up (len, 16));
- /* Initialize the integer and float register pointers. */
- argreg = MIPS_A0_REGNUM;
- float_argreg = mips_fpa0_regnum (gdbarch);
- /* The struct_return pointer occupies the first parameter-passing reg. */
- if (struct_return)
- {
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_n32n64_push_dummy_call: "
- "struct_return reg=%d %s\n",
- argreg, paddress (gdbarch, struct_addr));
- regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
- }
- /* Now load as many as possible of the first arguments into
- registers, and push the rest onto the stack. Loop thru args
- from first to last. */
- for (argnum = 0; argnum < nargs; argnum++)
- {
- const gdb_byte *val;
- struct value *arg = args[argnum];
- struct type *arg_type = check_typedef (value_type (arg));
- int len = TYPE_LENGTH (arg_type);
- enum type_code typecode = TYPE_CODE (arg_type);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_n32n64_push_dummy_call: %d len=%d type=%d",
- argnum + 1, len, (int) typecode);
- val = value_contents (arg);
- /* A 128-bit long double value requires an even-odd pair of
- floating-point registers. */
- if (len == 16
- && fp_register_arg_p (gdbarch, typecode, arg_type)
- && (float_argreg & 1))
- {
- float_argreg++;
- argreg++;
- }
- if (fp_register_arg_p (gdbarch, typecode, arg_type)
- && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
- {
- /* This is a floating point value that fits entirely
- in a single register or a pair of registers. */
- int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
- LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
- float_argreg, phex (regval, reglen));
- regcache_cooked_write_unsigned (regcache, float_argreg, regval);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
- argreg, phex (regval, reglen));
- regcache_cooked_write_unsigned (regcache, argreg, regval);
- float_argreg++;
- argreg++;
- if (len == 16)
- {
- regval = extract_unsigned_integer (val + reglen,
- reglen, byte_order);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
- float_argreg, phex (regval, reglen));
- regcache_cooked_write_unsigned (regcache, float_argreg, regval);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
- argreg, phex (regval, reglen));
- regcache_cooked_write_unsigned (regcache, argreg, regval);
- float_argreg++;
- argreg++;
- }
- }
- else
- {
- /* Copy the argument to general registers or the stack in
- register-sized pieces. Large arguments are split between
- registers and stack. */
- /* For N32/N64, structs, unions, or other composite types are
- treated as a sequence of doublewords, and are passed in integer
- or floating point registers as though they were simple scalar
- parameters to the extent that they fit, with any excess on the
- stack packed according to the normal memory layout of the
- object.
- The caller does not reserve space for the register arguments;
- the callee is responsible for reserving it if required. */
- /* Note: Floating-point values that didn't fit into an FP
- register are only written to memory. */
- while (len > 0)
- {
- /* Remember if the argument was written to the stack. */
- int stack_used_p = 0;
- int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
- partial_len);
- if (fp_register_arg_p (gdbarch, typecode, arg_type))
- gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
- /* Write this portion of the argument to the stack. */
- if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
- {
- /* Should shorter than int integer values be
- promoted to int before being stored? */
- int longword_offset = 0;
- CORE_ADDR addr;
- stack_used_p = 1;
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- {
- if ((typecode == TYPE_CODE_INT
- || typecode == TYPE_CODE_PTR)
- && len <= 4)
- longword_offset = MIPS64_REGSIZE - len;
- }
- if (mips_debug)
- {
- fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
- paddress (gdbarch, stack_offset));
- fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
- paddress (gdbarch, longword_offset));
- }
- addr = sp + stack_offset + longword_offset;
- if (mips_debug)
- {
- int i;
- fprintf_unfiltered (gdb_stdlog, " @%s ",
- paddress (gdbarch, addr));
- for (i = 0; i < partial_len; i++)
- {
- fprintf_unfiltered (gdb_stdlog, "%02x",
- val[i] & 0xff);
- }
- }
- write_memory (addr, val, partial_len);
- }
- /* Note!!! This is NOT an else clause. Odd sized
- structs may go thru BOTH paths. */
- /* Write this portion of the argument to a general
- purpose register. */
- if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
- {
- LONGEST regval;
- /* Sign extend pointers, 32-bit integers and signed
- 16-bit and 8-bit integers; everything else is taken
- as is. */
- if ((partial_len == 4
- && (typecode == TYPE_CODE_PTR
- || typecode == TYPE_CODE_INT))
- || (partial_len < 4
- && typecode == TYPE_CODE_INT
- && !TYPE_UNSIGNED (arg_type)))
- regval = extract_signed_integer (val, partial_len,
- byte_order);
- else
- regval = extract_unsigned_integer (val, partial_len,
- byte_order);
- /* A non-floating-point argument being passed in a
- general register. If a struct or union, and if
- the remaining length is smaller than the register
- size, we have to adjust the register value on
- big endian targets.
- It does not seem to be necessary to do the
- same for integral types. */
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
- && partial_len < MIPS64_REGSIZE
- && (typecode == TYPE_CODE_STRUCT
- || typecode == TYPE_CODE_UNION))
- regval <<= ((MIPS64_REGSIZE - partial_len)
- * TARGET_CHAR_BIT);
- if (mips_debug)
- fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
- argreg,
- phex (regval, MIPS64_REGSIZE));
- regcache_cooked_write_unsigned (regcache, argreg, regval);
- if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
- TYPE_LENGTH (arg_type) - len))
- {
- if (mips_debug)
- fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
- float_argreg,
- phex (regval, MIPS64_REGSIZE));
- regcache_cooked_write_unsigned (regcache, float_argreg,
- regval);
- }
- float_argreg++;
- argreg++;
- }
- len -= partial_len;
- val += partial_len;
- /* Compute the offset into the stack at which we will
- copy the next parameter.
- In N32 (N64?), the stack_offset only needs to be
- adjusted when it has been used. */
- if (stack_used_p)
- stack_offset += align_up (partial_len, MIPS64_REGSIZE);
- }
- }
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, "\n");
- }
- regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
- /* Return adjusted stack pointer. */
- return sp;
- }
- static enum return_value_convention
- mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
- struct type *type, struct regcache *regcache,
- gdb_byte *readbuf, const gdb_byte *writebuf)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
- Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
- if needed), as appropriate for the type. Composite results (struct,
- union, or array) are returned in $2/$f0 and $3/$f2 according to the
- following rules:
- * A struct with only one or two floating point fields is returned in $f0
- (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
- case.
- * Any other composite results of at most 128 bits are returned in
- $2 (first 64 bits) and $3 (remainder, if necessary).
- * Larger composite results are handled by converting the function to a
- procedure with an implicit first parameter, which is a pointer to an area
- reserved by the caller to receive the result. [The o32-bit ABI requires
- that all composite results be handled by conversion to implicit first
- parameters. The MIPS/SGI Fortran implementation has always made a
- specific exception to return COMPLEX results in the floating point
- registers.] */
- if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
- return RETURN_VALUE_STRUCT_CONVENTION;
- else if (TYPE_CODE (type) == TYPE_CODE_FLT
- && TYPE_LENGTH (type) == 16
- && tdep->mips_fpu_type != MIPS_FPU_NONE)
- {
- /* A 128-bit floating-point value fills both $f0 and $f2. The
- two registers are used in the same as memory order, so the
- eight bytes with the lower memory address are in $f0. */
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
- mips_xfer_register (gdbarch, regcache,
- (gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->fp0),
- 8, gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 0);
- mips_xfer_register (gdbarch, regcache,
- (gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->fp0 + 2),
- 8, gdbarch_byte_order (gdbarch),
- readbuf ? readbuf + 8 : readbuf,
- writebuf ? writebuf + 8 : writebuf, 0);
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- else if (TYPE_CODE (type) == TYPE_CODE_FLT
- && tdep->mips_fpu_type != MIPS_FPU_NONE)
- {
- /* A single or double floating-point value that fits in FP0. */
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
- mips_xfer_register (gdbarch, regcache,
- (gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->fp0),
- TYPE_LENGTH (type),
- gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 0);
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
- && TYPE_NFIELDS (type) <= 2
- && TYPE_NFIELDS (type) >= 1
- && ((TYPE_NFIELDS (type) == 1
- && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
- == TYPE_CODE_FLT))
- || (TYPE_NFIELDS (type) == 2
- && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
- == TYPE_CODE_FLT)
- && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
- == TYPE_CODE_FLT))))
- {
- /* A struct that contains one or two floats. Each value is part
- in the least significant part of their floating point
- register (or GPR, for soft float). */
- int regnum;
- int field;
- for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
- ? mips_regnum (gdbarch)->fp0
- : MIPS_V0_REGNUM);
- field < TYPE_NFIELDS (type); field++, regnum += 2)
- {
- int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
- / TARGET_CHAR_BIT);
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
- offset);
- if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
- {
- /* A 16-byte long double field goes in two consecutive
- registers. */
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + regnum,
- 8,
- gdbarch_byte_order (gdbarch),
- readbuf, writebuf, offset);
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + regnum + 1,
- 8,
- gdbarch_byte_order (gdbarch),
- readbuf, writebuf, offset + 8);
- }
- else
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + regnum,
- TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
- gdbarch_byte_order (gdbarch),
- readbuf, writebuf, offset);
- }
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
- || TYPE_CODE (type) == TYPE_CODE_UNION
- || TYPE_CODE (type) == TYPE_CODE_ARRAY)
- {
- /* A composite type. Extract the left justified value,
- regardless of the byte order. I.e. DO NOT USE
- mips_xfer_lower. */
- int offset;
- int regnum;
- for (offset = 0, regnum = MIPS_V0_REGNUM;
- offset < TYPE_LENGTH (type);
- offset += register_size (gdbarch, regnum), regnum++)
- {
- int xfer = register_size (gdbarch, regnum);
- if (offset + xfer > TYPE_LENGTH (type))
- xfer = TYPE_LENGTH (type) - offset;
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
- offset, xfer, regnum);
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + regnum,
- xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
- offset);
- }
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- else
- {
- /* A scalar extract each part but least-significant-byte
- justified. */
- int offset;
- int regnum;
- for (offset = 0, regnum = MIPS_V0_REGNUM;
- offset < TYPE_LENGTH (type);
- offset += register_size (gdbarch, regnum), regnum++)
- {
- int xfer = register_size (gdbarch, regnum);
- if (offset + xfer > TYPE_LENGTH (type))
- xfer = TYPE_LENGTH (type) - offset;
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
- offset, xfer, regnum);
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + regnum,
- xfer, gdbarch_byte_order (gdbarch),
- readbuf, writebuf, offset);
- }
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- }
- /* Which registers to use for passing floating-point values between
- function calls, one of floating-point, general and both kinds of
- registers. O32 and O64 use different register kinds for standard
- MIPS and MIPS16 code; to make the handling of cases where we may
- not know what kind of code is being used (e.g. no debug information)
- easier we sometimes use both kinds. */
- enum mips_fval_reg
- {
- mips_fval_fpr,
- mips_fval_gpr,
- mips_fval_both
- };
- /* O32 ABI stuff. */
- static CORE_ADDR
- mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
- struct regcache *regcache, CORE_ADDR bp_addr,
- int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
- {
- int argreg;
- int float_argreg;
- int argnum;
- int len = 0;
- int stack_offset = 0;
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR func_addr = find_function_addr (function, NULL);
- /* For shared libraries, "t9" needs to point at the function
- address. */
- regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
- /* Set the return address register to point to the entry point of
- the program, where a breakpoint lies in wait. */
- regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
- /* First ensure that the stack and structure return address (if any)
- are properly aligned. The stack has to be at least 64-bit
- aligned even on 32-bit machines, because doubles must be 64-bit
- aligned. For n32 and n64, stack frames need to be 128-bit
- aligned, so we round to this widest known alignment. */
- sp = align_down (sp, 16);
- struct_addr = align_down (struct_addr, 16);
- /* Now make space on the stack for the args. */
- for (argnum = 0; argnum < nargs; argnum++)
- {
- struct type *arg_type = check_typedef (value_type (args[argnum]));
- /* Align to double-word if necessary. */
- if (mips_type_needs_double_align (arg_type))
- len = align_up (len, MIPS32_REGSIZE * 2);
- /* Allocate space on the stack. */
- len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
- }
- sp -= align_up (len, 16);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
- paddress (gdbarch, sp), (long) align_up (len, 16));
- /* Initialize the integer and float register pointers. */
- argreg = MIPS_A0_REGNUM;
- float_argreg = mips_fpa0_regnum (gdbarch);
- /* The struct_return pointer occupies the first parameter-passing reg. */
- if (struct_return)
- {
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_o32_push_dummy_call: "
- "struct_return reg=%d %s\n",
- argreg, paddress (gdbarch, struct_addr));
- regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
- stack_offset += MIPS32_REGSIZE;
- }
- /* Now load as many as possible of the first arguments into
- registers, and push the rest onto the stack. Loop thru args
- from first to last. */
- for (argnum = 0; argnum < nargs; argnum++)
- {
- const gdb_byte *val;
- struct value *arg = args[argnum];
- struct type *arg_type = check_typedef (value_type (arg));
- int len = TYPE_LENGTH (arg_type);
- enum type_code typecode = TYPE_CODE (arg_type);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_o32_push_dummy_call: %d len=%d type=%d",
- argnum + 1, len, (int) typecode);
- val = value_contents (arg);
- /* 32-bit ABIs always start floating point arguments in an
- even-numbered floating point register. Round the FP register
- up before the check to see if there are any FP registers
- left. O32 targets also pass the FP in the integer registers
- so also round up normal registers. */
- if (fp_register_arg_p (gdbarch, typecode, arg_type))
- {
- if ((float_argreg & 1))
- float_argreg++;
- }
- /* Floating point arguments passed in registers have to be
- treated specially. On 32-bit architectures, doubles are
- passed in register pairs; the even FP register gets the
- low word, and the odd FP register gets the high word.
- On O32, the first two floating point arguments are also
- copied to general registers, following their memory order,
- because MIPS16 functions don't use float registers for
- arguments. This duplication of arguments in general
- registers can't hurt non-MIPS16 functions, because those
- registers are normally skipped. */
- if (fp_register_arg_p (gdbarch, typecode, arg_type)
- && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
- {
- if (register_size (gdbarch, float_argreg) < 8 && len == 8)
- {
- int freg_offset = gdbarch_byte_order (gdbarch)
- == BFD_ENDIAN_BIG ? 1 : 0;
- unsigned long regval;
- /* First word. */
- regval = extract_unsigned_integer (val, 4, byte_order);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
- float_argreg + freg_offset,
- phex (regval, 4));
- regcache_cooked_write_unsigned (regcache,
- float_argreg++ + freg_offset,
- regval);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
- argreg, phex (regval, 4));
- regcache_cooked_write_unsigned (regcache, argreg++, regval);
- /* Second word. */
- regval = extract_unsigned_integer (val + 4, 4, byte_order);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
- float_argreg - freg_offset,
- phex (regval, 4));
- regcache_cooked_write_unsigned (regcache,
- float_argreg++ - freg_offset,
- regval);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
- argreg, phex (regval, 4));
- regcache_cooked_write_unsigned (regcache, argreg++, regval);
- }
- else
- {
- /* This is a floating point value that fits entirely
- in a single register. */
- /* On 32 bit ABI's the float_argreg is further adjusted
- above to ensure that it is even register aligned. */
- LONGEST regval = extract_unsigned_integer (val, len, byte_order);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
- float_argreg, phex (regval, len));
- regcache_cooked_write_unsigned (regcache,
- float_argreg++, regval);
- /* Although two FP registers are reserved for each
- argument, only one corresponding integer register is
- reserved. */
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
- argreg, phex (regval, len));
- regcache_cooked_write_unsigned (regcache, argreg++, regval);
- }
- /* Reserve space for the FP register. */
- stack_offset += align_up (len, MIPS32_REGSIZE);
- }
- else
- {
- /* Copy the argument to general registers or the stack in
- register-sized pieces. Large arguments are split between
- registers and stack. */
- /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
- are treated specially: Irix cc passes
- them in registers where gcc sometimes puts them on the
- stack. For maximum compatibility, we will put them in
- both places. */
- int odd_sized_struct = (len > MIPS32_REGSIZE
- && len % MIPS32_REGSIZE != 0);
- /* Structures should be aligned to eight bytes (even arg registers)
- on MIPS_ABI_O32, if their first member has double precision. */
- if (mips_type_needs_double_align (arg_type))
- {
- if ((argreg & 1))
- {
- argreg++;
- stack_offset += MIPS32_REGSIZE;
- }
- }
- while (len > 0)
- {
- /* Remember if the argument was written to the stack. */
- int stack_used_p = 0;
- int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
- partial_len);
- /* Write this portion of the argument to the stack. */
- if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
- || odd_sized_struct)
- {
- /* Should shorter than int integer values be
- promoted to int before being stored? */
- int longword_offset = 0;
- CORE_ADDR addr;
- stack_used_p = 1;
- if (mips_debug)
- {
- fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
- paddress (gdbarch, stack_offset));
- fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
- paddress (gdbarch, longword_offset));
- }
- addr = sp + stack_offset + longword_offset;
- if (mips_debug)
- {
- int i;
- fprintf_unfiltered (gdb_stdlog, " @%s ",
- paddress (gdbarch, addr));
- for (i = 0; i < partial_len; i++)
- {
- fprintf_unfiltered (gdb_stdlog, "%02x",
- val[i] & 0xff);
- }
- }
- write_memory (addr, val, partial_len);
- }
- /* Note!!! This is NOT an else clause. Odd sized
- structs may go thru BOTH paths. */
- /* Write this portion of the argument to a general
- purpose register. */
- if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
- {
- LONGEST regval = extract_signed_integer (val, partial_len,
- byte_order);
- /* Value may need to be sign extended, because
- mips_isa_regsize() != mips_abi_regsize(). */
- /* A non-floating-point argument being passed in a
- general register. If a struct or union, and if
- the remaining length is smaller than the register
- size, we have to adjust the register value on
- big endian targets.
- It does not seem to be necessary to do the
- same for integral types.
- Also don't do this adjustment on O64 binaries.
- cagney/2001-07-23: gdb/179: Also, GCC, when
- outputting LE O32 with sizeof (struct) <
- mips_abi_regsize(), generates a left shift
- as part of storing the argument in a register
- (the left shift isn't generated when
- sizeof (struct) >= mips_abi_regsize()). Since
- it is quite possible that this is GCC
- contradicting the LE/O32 ABI, GDB has not been
- adjusted to accommodate this. Either someone
- needs to demonstrate that the LE/O32 ABI
- specifies such a left shift OR this new ABI gets
- identified as such and GDB gets tweaked
- accordingly. */
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
- && partial_len < MIPS32_REGSIZE
- && (typecode == TYPE_CODE_STRUCT
- || typecode == TYPE_CODE_UNION))
- regval <<= ((MIPS32_REGSIZE - partial_len)
- * TARGET_CHAR_BIT);
- if (mips_debug)
- fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
- argreg,
- phex (regval, MIPS32_REGSIZE));
- regcache_cooked_write_unsigned (regcache, argreg, regval);
- argreg++;
- /* Prevent subsequent floating point arguments from
- being passed in floating point registers. */
- float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
- }
- len -= partial_len;
- val += partial_len;
- /* Compute the offset into the stack at which we will
- copy the next parameter.
- In older ABIs, the caller reserved space for
- registers that contained arguments. This was loosely
- refered to as their "home". Consequently, space is
- always allocated. */
- stack_offset += align_up (partial_len, MIPS32_REGSIZE);
- }
- }
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, "\n");
- }
- regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
- /* Return adjusted stack pointer. */
- return sp;
- }
- static enum return_value_convention
- mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
- struct type *type, struct regcache *regcache,
- gdb_byte *readbuf, const gdb_byte *writebuf)
- {
- CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
- int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum mips_fval_reg fval_reg;
- fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
- if (TYPE_CODE (type) == TYPE_CODE_STRUCT
- || TYPE_CODE (type) == TYPE_CODE_UNION
- || TYPE_CODE (type) == TYPE_CODE_ARRAY)
- return RETURN_VALUE_STRUCT_CONVENTION;
- else if (TYPE_CODE (type) == TYPE_CODE_FLT
- && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
- {
- /* A single-precision floating-point value. If reading in or copying,
- then we get it from/put it to FP0 for standard MIPS code or GPR2
- for MIPS16 code. If writing out only, then we put it to both FP0
- and GPR2. We do not support reading in with no function known, if
- this safety check ever triggers, then we'll have to try harder. */
- gdb_assert (function || !readbuf);
- if (mips_debug)
- switch (fval_reg)
- {
- case mips_fval_fpr:
- fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
- break;
- case mips_fval_gpr:
- fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
- break;
- case mips_fval_both:
- fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
- break;
- }
- if (fval_reg != mips_fval_gpr)
- mips_xfer_register (gdbarch, regcache,
- (gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->fp0),
- TYPE_LENGTH (type),
- gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 0);
- if (fval_reg != mips_fval_fpr)
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + 2,
- TYPE_LENGTH (type),
- gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 0);
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- else if (TYPE_CODE (type) == TYPE_CODE_FLT
- && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
- {
- /* A double-precision floating-point value. If reading in or copying,
- then we get it from/put it to FP1 and FP0 for standard MIPS code or
- GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
- to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
- no function known, if this safety check ever triggers, then we'll
- have to try harder. */
- gdb_assert (function || !readbuf);
- if (mips_debug)
- switch (fval_reg)
- {
- case mips_fval_fpr:
- fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
- break;
- case mips_fval_gpr:
- fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
- break;
- case mips_fval_both:
- fprintf_unfiltered (gdb_stderr,
- "Return float in $fp1/$fp0 and $2/$3\n");
- break;
- }
- if (fval_reg != mips_fval_gpr)
- {
- /* The most significant part goes in FP1, and the least significant
- in FP0. */
- switch (gdbarch_byte_order (gdbarch))
- {
- case BFD_ENDIAN_LITTLE:
- mips_xfer_register (gdbarch, regcache,
- (gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->fp0 + 0),
- 4, gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 0);
- mips_xfer_register (gdbarch, regcache,
- (gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->fp0 + 1),
- 4, gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 4);
- break;
- case BFD_ENDIAN_BIG:
- mips_xfer_register (gdbarch, regcache,
- (gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->fp0 + 1),
- 4, gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 0);
- mips_xfer_register (gdbarch, regcache,
- (gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->fp0 + 0),
- 4, gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 4);
- break;
- default:
- internal_error (__FILE__, __LINE__, _("bad switch"));
- }
- }
- if (fval_reg != mips_fval_fpr)
- {
- /* The two 32-bit parts are always placed in GPR2 and GPR3
- following these registers' memory order. */
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + 2,
- 4, gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 0);
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + 3,
- 4, gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 4);
- }
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- #if 0
- else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
- && TYPE_NFIELDS (type) <= 2
- && TYPE_NFIELDS (type) >= 1
- && ((TYPE_NFIELDS (type) == 1
- && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
- == TYPE_CODE_FLT))
- || (TYPE_NFIELDS (type) == 2
- && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
- == TYPE_CODE_FLT)
- && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
- == TYPE_CODE_FLT)))
- && tdep->mips_fpu_type != MIPS_FPU_NONE)
- {
- /* A struct that contains one or two floats. Each value is part
- in the least significant part of their floating point
- register.. */
- gdb_byte reg[MAX_REGISTER_SIZE];
- int regnum;
- int field;
- for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
- field < TYPE_NFIELDS (type); field++, regnum += 2)
- {
- int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
- / TARGET_CHAR_BIT);
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
- offset);
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + regnum,
- TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
- gdbarch_byte_order (gdbarch),
- readbuf, writebuf, offset);
- }
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- #endif
- #if 0
- else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
- || TYPE_CODE (type) == TYPE_CODE_UNION)
- {
- /* A structure or union. Extract the left justified value,
- regardless of the byte order. I.e. DO NOT USE
- mips_xfer_lower. */
- int offset;
- int regnum;
- for (offset = 0, regnum = MIPS_V0_REGNUM;
- offset < TYPE_LENGTH (type);
- offset += register_size (gdbarch, regnum), regnum++)
- {
- int xfer = register_size (gdbarch, regnum);
- if (offset + xfer > TYPE_LENGTH (type))
- xfer = TYPE_LENGTH (type) - offset;
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
- offset, xfer, regnum);
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + regnum, xfer,
- BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
- }
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- #endif
- else
- {
- /* A scalar extract each part but least-significant-byte
- justified. o32 thinks registers are 4 byte, regardless of
- the ISA. */
- int offset;
- int regnum;
- for (offset = 0, regnum = MIPS_V0_REGNUM;
- offset < TYPE_LENGTH (type);
- offset += MIPS32_REGSIZE, regnum++)
- {
- int xfer = MIPS32_REGSIZE;
- if (offset + xfer > TYPE_LENGTH (type))
- xfer = TYPE_LENGTH (type) - offset;
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
- offset, xfer, regnum);
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + regnum, xfer,
- gdbarch_byte_order (gdbarch),
- readbuf, writebuf, offset);
- }
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- }
- /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
- ABI. */
- static CORE_ADDR
- mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
- struct regcache *regcache, CORE_ADDR bp_addr,
- int nargs,
- struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
- {
- int argreg;
- int float_argreg;
- int argnum;
- int len = 0;
- int stack_offset = 0;
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR func_addr = find_function_addr (function, NULL);
- /* For shared libraries, "t9" needs to point at the function
- address. */
- regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
- /* Set the return address register to point to the entry point of
- the program, where a breakpoint lies in wait. */
- regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
- /* First ensure that the stack and structure return address (if any)
- are properly aligned. The stack has to be at least 64-bit
- aligned even on 32-bit machines, because doubles must be 64-bit
- aligned. For n32 and n64, stack frames need to be 128-bit
- aligned, so we round to this widest known alignment. */
- sp = align_down (sp, 16);
- struct_addr = align_down (struct_addr, 16);
- /* Now make space on the stack for the args. */
- for (argnum = 0; argnum < nargs; argnum++)
- {
- struct type *arg_type = check_typedef (value_type (args[argnum]));
- /* Allocate space on the stack. */
- len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
- }
- sp -= align_up (len, 16);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
- paddress (gdbarch, sp), (long) align_up (len, 16));
- /* Initialize the integer and float register pointers. */
- argreg = MIPS_A0_REGNUM;
- float_argreg = mips_fpa0_regnum (gdbarch);
- /* The struct_return pointer occupies the first parameter-passing reg. */
- if (struct_return)
- {
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_o64_push_dummy_call: "
- "struct_return reg=%d %s\n",
- argreg, paddress (gdbarch, struct_addr));
- regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
- stack_offset += MIPS64_REGSIZE;
- }
- /* Now load as many as possible of the first arguments into
- registers, and push the rest onto the stack. Loop thru args
- from first to last. */
- for (argnum = 0; argnum < nargs; argnum++)
- {
- const gdb_byte *val;
- struct value *arg = args[argnum];
- struct type *arg_type = check_typedef (value_type (arg));
- int len = TYPE_LENGTH (arg_type);
- enum type_code typecode = TYPE_CODE (arg_type);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_o64_push_dummy_call: %d len=%d type=%d",
- argnum + 1, len, (int) typecode);
- val = value_contents (arg);
- /* Floating point arguments passed in registers have to be
- treated specially. On 32-bit architectures, doubles are
- passed in register pairs; the even FP register gets the
- low word, and the odd FP register gets the high word.
- On O64, the first two floating point arguments are also
- copied to general registers, because MIPS16 functions
- don't use float registers for arguments. This duplication
- of arguments in general registers can't hurt non-MIPS16
- functions because those registers are normally skipped. */
- if (fp_register_arg_p (gdbarch, typecode, arg_type)
- && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
- {
- LONGEST regval = extract_unsigned_integer (val, len, byte_order);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
- float_argreg, phex (regval, len));
- regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
- argreg, phex (regval, len));
- regcache_cooked_write_unsigned (regcache, argreg, regval);
- argreg++;
- /* Reserve space for the FP register. */
- stack_offset += align_up (len, MIPS64_REGSIZE);
- }
- else
- {
- /* Copy the argument to general registers or the stack in
- register-sized pieces. Large arguments are split between
- registers and stack. */
- /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
- are treated specially: Irix cc passes them in registers
- where gcc sometimes puts them on the stack. For maximum
- compatibility, we will put them in both places. */
- int odd_sized_struct = (len > MIPS64_REGSIZE
- && len % MIPS64_REGSIZE != 0);
- while (len > 0)
- {
- /* Remember if the argument was written to the stack. */
- int stack_used_p = 0;
- int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
- partial_len);
- /* Write this portion of the argument to the stack. */
- if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
- || odd_sized_struct)
- {
- /* Should shorter than int integer values be
- promoted to int before being stored? */
- int longword_offset = 0;
- CORE_ADDR addr;
- stack_used_p = 1;
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- {
- if ((typecode == TYPE_CODE_INT
- || typecode == TYPE_CODE_PTR
- || typecode == TYPE_CODE_FLT)
- && len <= 4)
- longword_offset = MIPS64_REGSIZE - len;
- }
- if (mips_debug)
- {
- fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
- paddress (gdbarch, stack_offset));
- fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
- paddress (gdbarch, longword_offset));
- }
- addr = sp + stack_offset + longword_offset;
- if (mips_debug)
- {
- int i;
- fprintf_unfiltered (gdb_stdlog, " @%s ",
- paddress (gdbarch, addr));
- for (i = 0; i < partial_len; i++)
- {
- fprintf_unfiltered (gdb_stdlog, "%02x",
- val[i] & 0xff);
- }
- }
- write_memory (addr, val, partial_len);
- }
- /* Note!!! This is NOT an else clause. Odd sized
- structs may go thru BOTH paths. */
- /* Write this portion of the argument to a general
- purpose register. */
- if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
- {
- LONGEST regval = extract_signed_integer (val, partial_len,
- byte_order);
- /* Value may need to be sign extended, because
- mips_isa_regsize() != mips_abi_regsize(). */
- /* A non-floating-point argument being passed in a
- general register. If a struct or union, and if
- the remaining length is smaller than the register
- size, we have to adjust the register value on
- big endian targets.
- It does not seem to be necessary to do the
- same for integral types. */
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
- && partial_len < MIPS64_REGSIZE
- && (typecode == TYPE_CODE_STRUCT
- || typecode == TYPE_CODE_UNION))
- regval <<= ((MIPS64_REGSIZE - partial_len)
- * TARGET_CHAR_BIT);
- if (mips_debug)
- fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
- argreg,
- phex (regval, MIPS64_REGSIZE));
- regcache_cooked_write_unsigned (regcache, argreg, regval);
- argreg++;
- /* Prevent subsequent floating point arguments from
- being passed in floating point registers. */
- float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
- }
- len -= partial_len;
- val += partial_len;
- /* Compute the offset into the stack at which we will
- copy the next parameter.
- In older ABIs, the caller reserved space for
- registers that contained arguments. This was loosely
- refered to as their "home". Consequently, space is
- always allocated. */
- stack_offset += align_up (partial_len, MIPS64_REGSIZE);
- }
- }
- if (mips_debug)
- fprintf_unfiltered (gdb_stdlog, "\n");
- }
- regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
- /* Return adjusted stack pointer. */
- return sp;
- }
- static enum return_value_convention
- mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
- struct type *type, struct regcache *regcache,
- gdb_byte *readbuf, const gdb_byte *writebuf)
- {
- CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
- int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum mips_fval_reg fval_reg;
- fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
- if (TYPE_CODE (type) == TYPE_CODE_STRUCT
- || TYPE_CODE (type) == TYPE_CODE_UNION
- || TYPE_CODE (type) == TYPE_CODE_ARRAY)
- return RETURN_VALUE_STRUCT_CONVENTION;
- else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
- {
- /* A floating-point value. If reading in or copying, then we get it
- from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
- If writing out only, then we put it to both FP0 and GPR2. We do
- not support reading in with no function known, if this safety
- check ever triggers, then we'll have to try harder. */
- gdb_assert (function || !readbuf);
- if (mips_debug)
- switch (fval_reg)
- {
- case mips_fval_fpr:
- fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
- break;
- case mips_fval_gpr:
- fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
- break;
- case mips_fval_both:
- fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
- break;
- }
- if (fval_reg != mips_fval_gpr)
- mips_xfer_register (gdbarch, regcache,
- (gdbarch_num_regs (gdbarch)
- + mips_regnum (gdbarch)->fp0),
- TYPE_LENGTH (type),
- gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 0);
- if (fval_reg != mips_fval_fpr)
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + 2,
- TYPE_LENGTH (type),
- gdbarch_byte_order (gdbarch),
- readbuf, writebuf, 0);
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- else
- {
- /* A scalar extract each part but least-significant-byte
- justified. */
- int offset;
- int regnum;
- for (offset = 0, regnum = MIPS_V0_REGNUM;
- offset < TYPE_LENGTH (type);
- offset += MIPS64_REGSIZE, regnum++)
- {
- int xfer = MIPS64_REGSIZE;
- if (offset + xfer > TYPE_LENGTH (type))
- xfer = TYPE_LENGTH (type) - offset;
- if (mips_debug)
- fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
- offset, xfer, regnum);
- mips_xfer_register (gdbarch, regcache,
- gdbarch_num_regs (gdbarch) + regnum,
- xfer, gdbarch_byte_order (gdbarch),
- readbuf, writebuf, offset);
- }
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
- }
- /* Floating point register management.
- Background: MIPS1 & 2 fp registers are 32 bits wide. To support
- 64bit operations, these early MIPS cpus treat fp register pairs
- (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
- registers and offer a compatibility mode that emulates the MIPS2 fp
- model. When operating in MIPS2 fp compat mode, later cpu's split
- double precision floats into two 32-bit chunks and store them in
- consecutive fp regs. To display 64-bit floats stored in this
- fashion, we have to combine 32 bits from f0 and 32 bits from f1.
- Throw in user-configurable endianness and you have a real mess.
- The way this works is:
- - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
- double-precision value will be split across two logical registers.
- The lower-numbered logical register will hold the low-order bits,
- regardless of the processor's endianness.
- - If we are on a 64-bit processor, and we are looking for a
- single-precision value, it will be in the low ordered bits
- of a 64-bit GPR (after mfc1, for example) or a 64-bit register
- save slot in memory.
- - If we are in 64-bit mode, everything is straightforward.
- Note that this code only deals with "live" registers at the top of the
- stack. We will attempt to deal with saved registers later, when
- the raw/cooked register interface is in place. (We need a general
- interface that can deal with dynamic saved register sizes -- fp
- regs could be 32 bits wide in one frame and 64 on the frame above
- and below). */
- /* Copy a 32-bit single-precision value from the current frame
- into rare_buffer. */
- static void
- mips_read_fp_register_single (struct frame_info *frame, int regno,
- gdb_byte *rare_buffer)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- int raw_size = register_size (gdbarch, regno);
- gdb_byte *raw_buffer = alloca (raw_size);
- if (!deprecated_frame_register_read (frame, regno, raw_buffer))
- error (_("can't read register %d (%s)"),
- regno, gdbarch_register_name (gdbarch, regno));
- if (raw_size == 8)
- {
- /* We have a 64-bit value for this register. Find the low-order
- 32 bits. */
- int offset;
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- offset = 4;
- else
- offset = 0;
- memcpy (rare_buffer, raw_buffer + offset, 4);
- }
- else
- {
- memcpy (rare_buffer, raw_buffer, 4);
- }
- }
- /* Copy a 64-bit double-precision value from the current frame into
- rare_buffer. This may include getting half of it from the next
- register. */
- static void
- mips_read_fp_register_double (struct frame_info *frame, int regno,
- gdb_byte *rare_buffer)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- int raw_size = register_size (gdbarch, regno);
- if (raw_size == 8 && !mips2_fp_compat (frame))
- {
- /* We have a 64-bit value for this register, and we should use
- all 64 bits. */
- if (!deprecated_frame_register_read (frame, regno, rare_buffer))
- error (_("can't read register %d (%s)"),
- regno, gdbarch_register_name (gdbarch, regno));
- }
- else
- {
- int rawnum = regno % gdbarch_num_regs (gdbarch);
- if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
- internal_error (__FILE__, __LINE__,
- _("mips_read_fp_register_double: bad access to "
- "odd-numbered FP register"));
- /* mips_read_fp_register_single will find the correct 32 bits from
- each register. */
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- {
- mips_read_fp_register_single (frame, regno, rare_buffer + 4);
- mips_read_fp_register_single (frame, regno + 1, rare_buffer);
- }
- else
- {
- mips_read_fp_register_single (frame, regno, rare_buffer);
- mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
- }
- }
- }
- static void
- mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
- int regnum)
- { /* Do values for FP (float) regs. */
- struct gdbarch *gdbarch = get_frame_arch (frame);
- gdb_byte *raw_buffer;
- double doub, flt1; /* Doubles extracted from raw hex data. */
- int inv1, inv2;
- raw_buffer = alloca (2 * register_size (gdbarch,
- mips_regnum (gdbarch)->fp0));
- fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
- fprintf_filtered (file, "%*s",
- 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
- "");
- if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
- {
- struct value_print_options opts;
- /* 4-byte registers: Print hex and floating. Also print even
- numbered registers as doubles. */
- mips_read_fp_register_single (frame, regnum, raw_buffer);
- flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
- raw_buffer, &inv1);
- get_formatted_print_options (&opts, 'x');
- print_scalar_formatted (raw_buffer,
- builtin_type (gdbarch)->builtin_uint32,
- &opts, 'w', file);
- fprintf_filtered (file, " flt: ");
- if (inv1)
- fprintf_filtered (file, " <invalid float> ");
- else
- fprintf_filtered (file, "%-17.9g", flt1);
- if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
- {
- mips_read_fp_register_double (frame, regnum, raw_buffer);
- doub = unpack_double (builtin_type (gdbarch)->builtin_double,
- raw_buffer, &inv2);
- fprintf_filtered (file, " dbl: ");
- if (inv2)
- fprintf_filtered (file, "<invalid double>");
- else
- fprintf_filtered (file, "%-24.17g", doub);
- }
- }
- else
- {
- struct value_print_options opts;
- /* Eight byte registers: print each one as hex, float and double. */
- mips_read_fp_register_single (frame, regnum, raw_buffer);
- flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
- raw_buffer, &inv1);
- mips_read_fp_register_double (frame, regnum, raw_buffer);
- doub = unpack_double (builtin_type (gdbarch)->builtin_double,
- raw_buffer, &inv2);
- get_formatted_print_options (&opts, 'x');
- print_scalar_formatted (raw_buffer,
- builtin_type (gdbarch)->builtin_uint64,
- &opts, 'g', file);
- fprintf_filtered (file, " flt: ");
- if (inv1)
- fprintf_filtered (file, "<invalid float>");
- else
- fprintf_filtered (file, "%-17.9g", flt1);
- fprintf_filtered (file, " dbl: ");
- if (inv2)
- fprintf_filtered (file, "<invalid double>");
- else
- fprintf_filtered (file, "%-24.17g", doub);
- }
- }
- static void
- mips_print_register (struct ui_file *file, struct frame_info *frame,
- int regnum)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- struct value_print_options opts;
- struct value *val;
- if (mips_float_register_p (gdbarch, regnum))
- {
- mips_print_fp_register (file, frame, regnum);
- return;
- }
- val = get_frame_register_value (frame, regnum);
- fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
- /* The problem with printing numeric register names (r26, etc.) is that
- the user can't use them on input. Probably the best solution is to
- fix it so that either the numeric or the funky (a2, etc.) names
- are accepted on input. */
- if (regnum < MIPS_NUMREGS)
- fprintf_filtered (file, "(r%d): ", regnum);
- else
- fprintf_filtered (file, ": ");
- get_formatted_print_options (&opts, 'x');
- val_print_scalar_formatted (value_type (val),
- value_contents_for_printing (val),
- value_embedded_offset (val),
- val,
- &opts, 0, file);
- }
- /* Print IEEE exception condition bits in FLAGS. */
- static void
- print_fpu_flags (struct ui_file *file, int flags)
- {
- if (flags & (1 << 0))
- fputs_filtered (" inexact", file);
- if (flags & (1 << 1))
- fputs_filtered (" uflow", file);
- if (flags & (1 << 2))
- fputs_filtered (" oflow", file);
- if (flags & (1 << 3))
- fputs_filtered (" div0", file);
- if (flags & (1 << 4))
- fputs_filtered (" inval", file);
- if (flags & (1 << 5))
- fputs_filtered (" unimp", file);
- fputc_filtered ('\n', file);
- }
- /* Print interesting information about the floating point processor
- (if present) or emulator. */
- static void
- mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
- struct frame_info *frame, const char *args)
- {
- int fcsr = mips_regnum (gdbarch)->fp_control_status;
- enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
- ULONGEST fcs = 0;
- int i;
- if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
- type = MIPS_FPU_NONE;
- fprintf_filtered (file, "fpu type: %s\n",
- type == MIPS_FPU_DOUBLE ? "double-precision"
- : type == MIPS_FPU_SINGLE ? "single-precision"
- : "none / unused");
- if (type == MIPS_FPU_NONE)
- return;
- fprintf_filtered (file, "reg size: %d bits\n",
- register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
- fputs_filtered ("cond :", file);
- if (fcs & (1 << 23))
- fputs_filtered (" 0", file);
- for (i = 1; i <= 7; i++)
- if (fcs & (1 << (24 + i)))
- fprintf_filtered (file, " %d", i);
- fputc_filtered ('\n', file);
- fputs_filtered ("cause :", file);
- print_fpu_flags (file, (fcs >> 12) & 0x3f);
- fputs ("mask :", stdout);
- print_fpu_flags (file, (fcs >> 7) & 0x1f);
- fputs ("flags :", stdout);
- print_fpu_flags (file, (fcs >> 2) & 0x1f);
- fputs_filtered ("rounding: ", file);
- switch (fcs & 3)
- {
- case 0: fputs_filtered ("nearest\n", file); break;
- case 1: fputs_filtered ("zero\n", file); break;
- case 2: fputs_filtered ("+inf\n", file); break;
- case 3: fputs_filtered ("-inf\n", file); break;
- }
- fputs_filtered ("flush :", file);
- if (fcs & (1 << 21))
- fputs_filtered (" nearest", file);
- if (fcs & (1 << 22))
- fputs_filtered (" override", file);
- if (fcs & (1 << 24))
- fputs_filtered (" zero", file);
- if ((fcs & (0xb << 21)) == 0)
- fputs_filtered (" no", file);
- fputc_filtered ('\n', file);
- fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
- fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
- fputc_filtered ('\n', file);
- default_print_float_info (gdbarch, file, frame, args);
- }
- /* Replacement for generic do_registers_info.
- Print regs in pretty columns. */
- static int
- print_fp_register_row (struct ui_file *file, struct frame_info *frame,
- int regnum)
- {
- fprintf_filtered (file, " ");
- mips_print_fp_register (file, frame, regnum);
- fprintf_filtered (file, "\n");
- return regnum + 1;
- }
- /* Print a row's worth of GP (int) registers, with name labels above. */
- static int
- print_gp_register_row (struct ui_file *file, struct frame_info *frame,
- int start_regnum)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- /* Do values for GP (int) regs. */
- gdb_byte raw_buffer[MAX_REGISTER_SIZE];
- int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
- per row. */
- int col, byte;
- int regnum;
- /* For GP registers, we print a separate row of names above the vals. */
- for (col = 0, regnum = start_regnum;
- col < ncols && regnum < gdbarch_num_regs (gdbarch)
- + gdbarch_num_pseudo_regs (gdbarch);
- regnum++)
- {
- if (*gdbarch_register_name (gdbarch, regnum) == '\0')
- continue; /* unused register */
- if (mips_float_register_p (gdbarch, regnum))
- break; /* End the row: reached FP register. */
- /* Large registers are handled separately. */
- if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
- {
- if (col > 0)
- break; /* End the row before this register. */
- /* Print this register on a row by itself. */
- mips_print_register (file, frame, regnum);
- fprintf_filtered (file, "\n");
- return regnum + 1;
- }
- if (col == 0)
- fprintf_filtered (file, " ");
- fprintf_filtered (file,
- mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
- gdbarch_register_name (gdbarch, regnum));
- col++;
- }
- if (col == 0)
- return regnum;
- /* Print the R0 to R31 names. */
- if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
- fprintf_filtered (file, "\n R%-4d",
- start_regnum % gdbarch_num_regs (gdbarch));
- else
- fprintf_filtered (file, "\n ");
- /* Now print the values in hex, 4 or 8 to the row. */
- for (col = 0, regnum = start_regnum;
- col < ncols && regnum < gdbarch_num_regs (gdbarch)
- + gdbarch_num_pseudo_regs (gdbarch);
- regnum++)
- {
- if (*gdbarch_register_name (gdbarch, regnum) == '\0')
- continue; /* unused register */
- if (mips_float_register_p (gdbarch, regnum))
- break; /* End row: reached FP register. */
- if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
- break; /* End row: large register. */
- /* OK: get the data in raw format. */
- if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
- error (_("can't read register %d (%s)"),
- regnum, gdbarch_register_name (gdbarch, regnum));
- /* pad small registers */
- for (byte = 0;
- byte < (mips_abi_regsize (gdbarch)
- - register_size (gdbarch, regnum)); byte++)
- printf_filtered (" ");
- /* Now print the register value in hex, endian order. */
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- for (byte =
- register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
- byte < register_size (gdbarch, regnum); byte++)
- fprintf_filtered (file, "%02x", raw_buffer[byte]);
- else
- for (byte = register_size (gdbarch, regnum) - 1;
- byte >= 0; byte--)
- fprintf_filtered (file, "%02x", raw_buffer[byte]);
- fprintf_filtered (file, " ");
- col++;
- }
- if (col > 0) /* ie. if we actually printed anything... */
- fprintf_filtered (file, "\n");
- return regnum;
- }
- /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
- static void
- mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
- struct frame_info *frame, int regnum, int all)
- {
- if (regnum != -1) /* Do one specified register. */
- {
- gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
- if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
- error (_("Not a valid register for the current processor type"));
- mips_print_register (file, frame, regnum);
- fprintf_filtered (file, "\n");
- }
- else
- /* Do all (or most) registers. */
- {
- regnum = gdbarch_num_regs (gdbarch);
- while (regnum < gdbarch_num_regs (gdbarch)
- + gdbarch_num_pseudo_regs (gdbarch))
- {
- if (mips_float_register_p (gdbarch, regnum))
- {
- if (all) /* True for "INFO ALL-REGISTERS" command. */
- regnum = print_fp_register_row (file, frame, regnum);
- else
- regnum += MIPS_NUMREGS; /* Skip floating point regs. */
- }
- else
- regnum = print_gp_register_row (file, frame, regnum);
- }
- }
- }
- static int
- mips_single_step_through_delay (struct gdbarch *gdbarch,
- struct frame_info *frame)
- {
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR pc = get_frame_pc (frame);
- struct address_space *aspace;
- enum mips_isa isa;
- ULONGEST insn;
- int status;
- int size;
- if ((mips_pc_is_mips (pc)
- && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
- || (mips_pc_is_micromips (gdbarch, pc)
- && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
- || (mips_pc_is_mips16 (gdbarch, pc)
- && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
- return 0;
- isa = mips_pc_isa (gdbarch, pc);
- /* _has_delay_slot above will have validated the read. */
- insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
- size = mips_insn_size (isa, insn);
- aspace = get_frame_address_space (frame);
- return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
- }
- /* To skip prologues, I use this predicate. Returns either PC itself
- if the code at PC does not look like a function prologue; otherwise
- returns an address that (if we're lucky) follows the prologue. If
- LENIENT, then we must skip everything which is involved in setting
- up the frame (it's OK to skip more, just so long as we don't skip
- anything which might clobber the registers which are being saved.
- We must skip more in the case where part of the prologue is in the
- delay slot of a non-prologue instruction). */
- static CORE_ADDR
- mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
- {
- CORE_ADDR limit_pc;
- CORE_ADDR func_addr;
- /* See if we can determine the end of the prologue via the symbol table.
- If so, then return either PC, or the PC after the prologue, whichever
- is greater. */
- if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
- {
- CORE_ADDR post_prologue_pc
- = skip_prologue_using_sal (gdbarch, func_addr);
- if (post_prologue_pc != 0)
- return max (pc, post_prologue_pc);
- }
- /* Can't determine prologue from the symbol table, need to examine
- instructions. */
- /* Find an upper limit on the function prologue using the debug
- information. If the debug information could not be used to provide
- that bound, then use an arbitrary large number as the upper bound. */
- limit_pc = skip_prologue_using_sal (gdbarch, pc);
- if (limit_pc == 0)
- limit_pc = pc + 100; /* Magic. */
- if (mips_pc_is_mips16 (gdbarch, pc))
- return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
- else if (mips_pc_is_micromips (gdbarch, pc))
- return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
- else
- return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
- }
- /* Check whether the PC is in a function epilogue (32-bit version).
- This is a helper function for mips_in_function_epilogue_p. */
- static int
- mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
- {
- CORE_ADDR func_addr = 0, func_end = 0;
- if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
- {
- /* The MIPS epilogue is max. 12 bytes long. */
- CORE_ADDR addr = func_end - 12;
- if (addr < func_addr + 4)
- addr = func_addr + 4;
- if (pc < addr)
- return 0;
- for (; pc < func_end; pc += MIPS_INSN32_SIZE)
- {
- unsigned long high_word;
- unsigned long inst;
- inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
- high_word = (inst >> 16) & 0xffff;
- if (high_word != 0x27bd /* addiu $sp,$sp,offset */
- && high_word != 0x67bd /* daddiu $sp,$sp,offset */
- && inst != 0x03e00008 /* jr $ra */
- && inst != 0x00000000) /* nop */
- return 0;
- }
- return 1;
- }
- return 0;
- }
- /* Check whether the PC is in a function epilogue (microMIPS version).
- This is a helper function for mips_in_function_epilogue_p. */
- static int
- micromips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
- {
- CORE_ADDR func_addr = 0;
- CORE_ADDR func_end = 0;
- CORE_ADDR addr;
- ULONGEST insn;
- long offset;
- int dreg;
- int sreg;
- int loc;
- if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
- return 0;
- /* The microMIPS epilogue is max. 12 bytes long. */
- addr = func_end - 12;
- if (addr < func_addr + 2)
- addr = func_addr + 2;
- if (pc < addr)
- return 0;
- for (; pc < func_end; pc += loc)
- {
- loc = 0;
- insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
- loc += MIPS_INSN16_SIZE;
- switch (mips_insn_size (ISA_MICROMIPS, insn))
- {
- /* 48-bit instructions. */
- case 3 * MIPS_INSN16_SIZE:
- /* No epilogue instructions in this category. */
- return 0;
- /* 32-bit instructions. */
- case 2 * MIPS_INSN16_SIZE:
- insn <<= 16;
- insn |= mips_fetch_instruction (gdbarch,
- ISA_MICROMIPS, pc + loc, NULL);
- loc += MIPS_INSN16_SIZE;
- switch (micromips_op (insn >> 16))
- {
- case 0xc: /* ADDIU: bits 001100 */
- case 0x17: /* DADDIU: bits 010111 */
- sreg = b0s5_reg (insn >> 16);
- dreg = b5s5_reg (insn >> 16);
- offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
- if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
- /* (D)ADDIU $sp, imm */
- && offset >= 0)
- break;
- return 0;
- default:
- return 0;
- }
- break;
- /* 16-bit instructions. */
- case MIPS_INSN16_SIZE:
- switch (micromips_op (insn))
- {
- case 0x3: /* MOVE: bits 000011 */
- sreg = b0s5_reg (insn);
- dreg = b5s5_reg (insn);
- if (sreg == 0 && dreg == 0)
- /* MOVE $zero, $zero aka NOP */
- break;
- return 0;
- case 0x11: /* POOL16C: bits 010001 */
- if (b5s5_op (insn) == 0x18
- /* JRADDIUSP: bits 010011 11000 */
- || (b5s5_op (insn) == 0xd
- /* JRC: bits 010011 01101 */
- && b0s5_reg (insn) == MIPS_RA_REGNUM))
- /* JRC $ra */
- break;
- return 0;
- case 0x13: /* POOL16D: bits 010011 */
- offset = micromips_decode_imm9 (b1s9_imm (insn));
- if ((insn & 0x1) == 0x1
- /* ADDIUSP: bits 010011 1 */
- && offset > 0)
- break;
- return 0;
- default:
- return 0;
- }
- }
- }
- return 1;
- }
- /* Check whether the PC is in a function epilogue (16-bit version).
- This is a helper function for mips_in_function_epilogue_p. */
- static int
- mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
- {
- CORE_ADDR func_addr = 0, func_end = 0;
- if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
- {
- /* The MIPS epilogue is max. 12 bytes long. */
- CORE_ADDR addr = func_end - 12;
- if (addr < func_addr + 4)
- addr = func_addr + 4;
- if (pc < addr)
- return 0;
- for (; pc < func_end; pc += MIPS_INSN16_SIZE)
- {
- unsigned short inst;
- inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
- if ((inst & 0xf800) == 0xf000) /* extend */
- continue;
- if (inst != 0x6300 /* addiu $sp,offset */
- && inst != 0xfb00 /* daddiu $sp,$sp,offset */
- && inst != 0xe820 /* jr $ra */
- && inst != 0xe8a0 /* jrc $ra */
- && inst != 0x6500) /* nop */
- return 0;
- }
- return 1;
- }
- return 0;
- }
- /* The epilogue is defined here as the area at the end of a function,
- after an instruction which destroys the function's stack frame. */
- static int
- mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
- {
- if (mips_pc_is_mips16 (gdbarch, pc))
- return mips16_in_function_epilogue_p (gdbarch, pc);
- else if (mips_pc_is_micromips (gdbarch, pc))
- return micromips_in_function_epilogue_p (gdbarch, pc);
- else
- return mips32_in_function_epilogue_p (gdbarch, pc);
- }
- /* Root of all "set mips "/"show mips " commands. This will eventually be
- used for all MIPS-specific commands. */
- static void
- show_mips_command (char *args, int from_tty)
- {
- help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
- }
- static void
- set_mips_command (char *args, int from_tty)
- {
- printf_unfiltered
- ("\"set mips\" must be followed by an appropriate subcommand.\n");
- help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
- }
- /* Commands to show/set the MIPS FPU type. */
- static void
- show_mipsfpu_command (char *args, int from_tty)
- {
- char *fpu;
- if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
- {
- printf_unfiltered
- ("The MIPS floating-point coprocessor is unknown "
- "because the current architecture is not MIPS.\n");
- return;
- }
- switch (MIPS_FPU_TYPE (target_gdbarch ()))
- {
- case MIPS_FPU_SINGLE:
- fpu = "single-precision";
- break;
- case MIPS_FPU_DOUBLE:
- fpu = "double-precision";
- break;
- case MIPS_FPU_NONE:
- fpu = "absent (none)";
- break;
- default:
- internal_error (__FILE__, __LINE__, _("bad switch"));
- }
- if (mips_fpu_type_auto)
- printf_unfiltered ("The MIPS floating-point coprocessor "
- "is set automatically (currently %s)\n",
- fpu);
- else
- printf_unfiltered
- ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
- }
- static void
- set_mipsfpu_command (char *args, int from_tty)
- {
- printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
- "\"single\",\"none\" or \"auto\".\n");
- show_mipsfpu_command (args, from_tty);
- }
- static void
- set_mipsfpu_single_command (char *args, int from_tty)
- {
- struct gdbarch_info info;
- gdbarch_info_init (&info);
- mips_fpu_type = MIPS_FPU_SINGLE;
- mips_fpu_type_auto = 0;
- /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
- instead of relying on globals. Doing that would let generic code
- handle the search for this specific architecture. */
- if (!gdbarch_update_p (info))
- internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
- }
- static void
- set_mipsfpu_double_command (char *args, int from_tty)
- {
- struct gdbarch_info info;
- gdbarch_info_init (&info);
- mips_fpu_type = MIPS_FPU_DOUBLE;
- mips_fpu_type_auto = 0;
- /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
- instead of relying on globals. Doing that would let generic code
- handle the search for this specific architecture. */
- if (!gdbarch_update_p (info))
- internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
- }
- static void
- set_mipsfpu_none_command (char *args, int from_tty)
- {
- struct gdbarch_info info;
- gdbarch_info_init (&info);
- mips_fpu_type = MIPS_FPU_NONE;
- mips_fpu_type_auto = 0;
- /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
- instead of relying on globals. Doing that would let generic code
- handle the search for this specific architecture. */
- if (!gdbarch_update_p (info))
- internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
- }
- static void
- set_mipsfpu_auto_command (char *args, int from_tty)
- {
- mips_fpu_type_auto = 1;
- }
- /* Attempt to identify the particular processor model by reading the
- processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
- the relevant processor still exists (it dates back to '94) and
- secondly this is not the way to do this. The processor type should
- be set by forcing an architecture change. */
- void
- deprecated_mips_set_processor_regs_hack (void)
- {
- struct regcache *regcache = get_current_regcache ();
- struct gdbarch *gdbarch = get_regcache_arch (regcache);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- ULONGEST prid;
- regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
- if ((prid & ~0xf) == 0x700)
- tdep->mips_processor_reg_names = mips_r3041_reg_names;
- }
- /* Just like reinit_frame_cache, but with the right arguments to be
- callable as an sfunc. */
- static void
- reinit_frame_cache_sfunc (char *args, int from_tty,
- struct cmd_list_element *c)
- {
- reinit_frame_cache ();
- }
- static int
- gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
- {
- struct gdbarch *gdbarch = info->application_data;
- /* FIXME: cagney/2003-06-26: Is this even necessary? The
- disassembler needs to be able to locally determine the ISA, and
- not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
- work. */
- if (mips_pc_is_mips16 (gdbarch, memaddr))
- info->mach = bfd_mach_mips16;
- else if (mips_pc_is_micromips (gdbarch, memaddr))
- info->mach = bfd_mach_mips_micromips;
- /* Round down the instruction address to the appropriate boundary. */
- memaddr &= (info->mach == bfd_mach_mips16
- || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
- /* Set the disassembler options. */
- if (!info->disassembler_options)
- /* This string is not recognized explicitly by the disassembler,
- but it tells the disassembler to not try to guess the ABI from
- the bfd elf headers, such that, if the user overrides the ABI
- of a program linked as NewABI, the disassembly will follow the
- register naming conventions specified by the user. */
- info->disassembler_options = "gpr-names=32";
- /* Call the appropriate disassembler based on the target endian-ness. */
- if (info->endian == BFD_ENDIAN_BIG)
- return print_insn_big_mips (memaddr, info);
- else
- return print_insn_little_mips (memaddr, info);
- }
- static int
- gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
- {
- /* Set up the disassembler info, so that we get the right
- register names from libopcodes. */
- info->disassembler_options = "gpr-names=n32";
- info->flavour = bfd_target_elf_flavour;
- return gdb_print_insn_mips (memaddr, info);
- }
- static int
- gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
- {
- /* Set up the disassembler info, so that we get the right
- register names from libopcodes. */
- info->disassembler_options = "gpr-names=64";
- info->flavour = bfd_target_elf_flavour;
- return gdb_print_insn_mips (memaddr, info);
- }
- /* This function implements gdbarch_breakpoint_from_pc. It uses the
- program counter value to determine whether a 16- or 32-bit breakpoint
- should be used. It returns a pointer to a string of bytes that encode a
- breakpoint instruction, stores the length of the string to *lenptr, and
- adjusts pc (if necessary) to point to the actual memory location where
- the breakpoint should be inserted. */
- static const gdb_byte *
- mips_breakpoint_from_pc (struct gdbarch *gdbarch,
- CORE_ADDR *pcptr, int *lenptr)
- {
- CORE_ADDR pc = *pcptr;
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- {
- if (mips_pc_is_mips16 (gdbarch, pc))
- {
- static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
- *pcptr = unmake_compact_addr (pc);
- *lenptr = sizeof (mips16_big_breakpoint);
- return mips16_big_breakpoint;
- }
- else if (mips_pc_is_micromips (gdbarch, pc))
- {
- static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
- static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
- ULONGEST insn;
- int status;
- int size;
- insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
- size = status ? 2
- : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
- *pcptr = unmake_compact_addr (pc);
- *lenptr = size;
- return (size == 2) ? micromips16_big_breakpoint
- : micromips32_big_breakpoint;
- }
- else
- {
- /* The IDT board uses an unusual breakpoint value, and
- sometimes gets confused when it sees the usual MIPS
- breakpoint instruction. */
- static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
- static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
- static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
- /* Likewise, IRIX appears to expect a different breakpoint,
- although this is not apparent until you try to use pthreads. */
- static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
- *lenptr = sizeof (big_breakpoint);
- if (strcmp (target_shortname, "mips") == 0)
- return idt_big_breakpoint;
- else if (strcmp (target_shortname, "ddb") == 0
- || strcmp (target_shortname, "pmon") == 0
- || strcmp (target_shortname, "lsi") == 0)
- return pmon_big_breakpoint;
- else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
- return irix_big_breakpoint;
- else
- return big_breakpoint;
- }
- }
- else
- {
- if (mips_pc_is_mips16 (gdbarch, pc))
- {
- static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
- *pcptr = unmake_compact_addr (pc);
- *lenptr = sizeof (mips16_little_breakpoint);
- return mips16_little_breakpoint;
- }
- else if (mips_pc_is_micromips (gdbarch, pc))
- {
- static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
- static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
- ULONGEST insn;
- int status;
- int size;
- insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
- size = status ? 2
- : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
- *pcptr = unmake_compact_addr (pc);
- *lenptr = size;
- return (size == 2) ? micromips16_little_breakpoint
- : micromips32_little_breakpoint;
- }
- else
- {
- static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
- static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
- static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
- *lenptr = sizeof (little_breakpoint);
- if (strcmp (target_shortname, "mips") == 0)
- return idt_little_breakpoint;
- else if (strcmp (target_shortname, "ddb") == 0
- || strcmp (target_shortname, "pmon") == 0
- || strcmp (target_shortname, "lsi") == 0)
- return pmon_little_breakpoint;
- else
- return little_breakpoint;
- }
- }
- }
- /* Determine the remote breakpoint kind suitable for the PC. The following
- kinds are used:
- * 2 -- 16-bit MIPS16 mode breakpoint,
- * 3 -- 16-bit microMIPS mode breakpoint,
- * 4 -- 32-bit standard MIPS mode breakpoint,
- * 5 -- 32-bit microMIPS mode breakpoint. */
- static void
- mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
- int *kindptr)
- {
- CORE_ADDR pc = *pcptr;
- if (mips_pc_is_mips16 (gdbarch, pc))
- {
- *pcptr = unmake_compact_addr (pc);
- *kindptr = 2;
- }
- else if (mips_pc_is_micromips (gdbarch, pc))
- {
- ULONGEST insn;
- int status;
- int size;
- insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
- size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
- *pcptr = unmake_compact_addr (pc);
- *kindptr = size | 1;
- }
- else
- *kindptr = 4;
- }
- /* Return non-zero if the standard MIPS instruction INST has a branch
- delay slot (i.e. it is a jump or branch instruction). This function
- is based on mips32_next_pc. */
- static int
- mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
- {
- int op;
- int rs;
- int rt;
- op = itype_op (inst);
- if ((inst & 0xe0000000) != 0)
- {
- rs = itype_rs (inst);
- rt = itype_rt (inst);
- return (is_octeon_bbit_op (op, gdbarch)
- || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
- || op == 29 /* JALX: bits 011101 */
- || (op == 17
- && (rs == 8
- /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
- || (rs == 9 && (rt & 0x2) == 0)
- /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
- || (rs == 10 && (rt & 0x2) == 0))));
- /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
- }
- else
- switch (op & 0x07) /* extract bits 28,27,26 */
- {
- case 0: /* SPECIAL */
- op = rtype_funct (inst);
- return (op == 8 /* JR */
- || op == 9); /* JALR */
- break; /* end SPECIAL */
- case 1: /* REGIMM */
- rs = itype_rs (inst);
- rt = itype_rt (inst); /* branch condition */
- return ((rt & 0xc) == 0
- /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
- /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
- || ((rt & 0x1e) == 0x1c && rs == 0));
- /* BPOSGE32, BPOSGE64: bits 1110x */
- break; /* end REGIMM */
- default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
- return 1;
- break;
- }
- }
- /* Return non-zero if a standard MIPS instruction at ADDR has a branch
- delay slot (i.e. it is a jump or branch instruction). */
- static int
- mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
- {
- ULONGEST insn;
- int status;
- insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
- if (status)
- return 0;
- return mips32_instruction_has_delay_slot (gdbarch, insn);
- }
- /* Return non-zero if the microMIPS instruction INSN, comprising the
- 16-bit major opcode word in the high 16 bits and any second word
- in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
- jump or branch instruction). The instruction must be 32-bit if
- MUSTBE32 is set or can be any instruction otherwise. */
- static int
- micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
- {
- ULONGEST major = insn >> 16;
- switch (micromips_op (major))
- {
- /* 16-bit instructions. */
- case 0x33: /* B16: bits 110011 */
- case 0x2b: /* BNEZ16: bits 101011 */
- case 0x23: /* BEQZ16: bits 100011 */
- return !mustbe32;
- case 0x11: /* POOL16C: bits 010001 */
- return (!mustbe32
- && ((b5s5_op (major) == 0xc
- /* JR16: bits 010001 01100 */
- || (b5s5_op (major) & 0x1e) == 0xe)));
- /* JALR16, JALRS16: bits 010001 0111x */
- /* 32-bit instructions. */
- case 0x3d: /* JAL: bits 111101 */
- case 0x3c: /* JALX: bits 111100 */
- case 0x35: /* J: bits 110101 */
- case 0x2d: /* BNE: bits 101101 */
- case 0x25: /* BEQ: bits 100101 */
- case 0x1d: /* JALS: bits 011101 */
- return 1;
- case 0x10: /* POOL32I: bits 010000 */
- return ((b5s5_op (major) & 0x1c) == 0x0
- /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
- || (b5s5_op (major) & 0x1d) == 0x4
- /* BLEZ, BGTZ: bits 010000 001x0 */
- || (b5s5_op (major) & 0x1d) == 0x11
- /* BLTZALS, BGEZALS: bits 010000 100x1 */
- || ((b5s5_op (major) & 0x1e) == 0x14
- && (major & 0x3) == 0x0)
- /* BC2F, BC2T: bits 010000 1010x xxx00 */
- || (b5s5_op (major) & 0x1e) == 0x1a
- /* BPOSGE64, BPOSGE32: bits 010000 1101x */
- || ((b5s5_op (major) & 0x1e) == 0x1c
- && (major & 0x3) == 0x0)
- /* BC1F, BC1T: bits 010000 1110x xxx00 */
- || ((b5s5_op (major) & 0x1c) == 0x1c
- && (major & 0x3) == 0x1));
- /* BC1ANY*: bits 010000 111xx xxx01 */
- case 0x0: /* POOL32A: bits 000000 */
- return (b0s6_op (insn) == 0x3c
- /* POOL32Axf: bits 000000 ... 111100 */
- && (b6s10_ext (insn) & 0x2bf) == 0x3c);
- /* JALR, JALR.HB: 000000 000x111100 111100 */
- /* JALRS, JALRS.HB: 000000 010x111100 111100 */
- default:
- return 0;
- }
- }
- /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
- slot (i.e. it is a non-compact jump instruction). The instruction
- must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
- static int
- micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
- CORE_ADDR addr, int mustbe32)
- {
- ULONGEST insn;
- int status;
- insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
- if (status)
- return 0;
- insn <<= 16;
- if (mips_insn_size (ISA_MICROMIPS, insn) == 2 * MIPS_INSN16_SIZE)
- {
- insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
- if (status)
- return 0;
- }
- return micromips_instruction_has_delay_slot (insn, mustbe32);
- }
- /* Return non-zero if the MIPS16 instruction INST, which must be
- a 32-bit instruction if MUSTBE32 is set or can be any instruction
- otherwise, has a branch delay slot (i.e. it is a non-compact jump
- instruction). This function is based on mips16_next_pc. */
- static int
- mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
- {
- if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
- return !mustbe32;
- return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
- }
- /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
- slot (i.e. it is a non-compact jump instruction). The instruction
- must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
- static int
- mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
- CORE_ADDR addr, int mustbe32)
- {
- unsigned short insn;
- int status;
- insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
- if (status)
- return 0;
- return mips16_instruction_has_delay_slot (insn, mustbe32);
- }
- /* Calculate the starting address of the MIPS memory segment BPADDR is in.
- This assumes KSSEG exists. */
- static CORE_ADDR
- mips_segment_boundary (CORE_ADDR bpaddr)
- {
- CORE_ADDR mask = CORE_ADDR_MAX;
- int segsize;
- if (sizeof (CORE_ADDR) == 8)
- /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
- a compiler warning produced where CORE_ADDR is a 32-bit type even
- though in that case this is dead code). */
- switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
- {
- case 3:
- if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
- segsize = 29; /* 32-bit compatibility segment */
- else
- segsize = 62; /* xkseg */
- break;
- case 2: /* xkphys */
- segsize = 59;
- break;
- default: /* xksseg (1), xkuseg/kuseg (0) */
- segsize = 62;
- break;
- }
- else if (bpaddr & 0x80000000) /* kernel segment */
- segsize = 29;
- else
- segsize = 31; /* user segment */
- mask <<= segsize;
- return bpaddr & mask;
- }
- /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
- it backwards if necessary. Return the address of the new location. */
- static CORE_ADDR
- mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
- {
- CORE_ADDR prev_addr;
- CORE_ADDR boundary;
- CORE_ADDR func_addr;
- /* If a breakpoint is set on the instruction in a branch delay slot,
- GDB gets confused. When the breakpoint is hit, the PC isn't on
- the instruction in the branch delay slot, the PC will point to
- the branch instruction. Since the PC doesn't match any known
- breakpoints, GDB reports a trap exception.
- There are two possible fixes for this problem.
- 1) When the breakpoint gets hit, see if the BD bit is set in the
- Cause register (which indicates the last exception occurred in a
- branch delay slot). If the BD bit is set, fix the PC to point to
- the instruction in the branch delay slot.
- 2) When the user sets the breakpoint, don't allow him to set the
- breakpoint on the instruction in the branch delay slot. Instead
- move the breakpoint to the branch instruction (which will have
- the same result).
- The problem with the first solution is that if the user then
- single-steps the processor, the branch instruction will get
- skipped (since GDB thinks the PC is on the instruction in the
- branch delay slot).
- So, we'll use the second solution. To do this we need to know if
- the instruction we're trying to set the breakpoint on is in the
- branch delay slot. */
- boundary = mips_segment_boundary (bpaddr);
- /* Make sure we don't scan back before the beginning of the current
- function, since we may fetch constant data or insns that look like
- a jump. Of course we might do that anyway if the compiler has
- moved constants inline. :-( */
- if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
- && func_addr > boundary && func_addr <= bpaddr)
- boundary = func_addr;
- if (mips_pc_is_mips (bpaddr))
- {
- if (bpaddr == boundary)
- return bpaddr;
- /* If the previous instruction has a branch delay slot, we have
- to move the breakpoint to the branch instruction. */
- prev_addr = bpaddr - 4;
- if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
- bpaddr = prev_addr;
- }
- else
- {
- int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
- CORE_ADDR addr, jmpaddr;
- int i;
- boundary = unmake_compact_addr (boundary);
- /* The only MIPS16 instructions with delay slots are JAL, JALX,
- JALR and JR. An absolute JAL/JALX is always 4 bytes long,
- so try for that first, then try the 2 byte JALR/JR.
- The microMIPS ASE has a whole range of jumps and branches
- with delay slots, some of which take 4 bytes and some take
- 2 bytes, so the idea is the same.
- FIXME: We have to assume that bpaddr is not the second half
- of an extended instruction. */
- insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
- ? micromips_insn_at_pc_has_delay_slot
- : mips16_insn_at_pc_has_delay_slot);
- jmpaddr = 0;
- addr = bpaddr;
- for (i = 1; i < 4; i++)
- {
- if (unmake_compact_addr (addr) == boundary)
- break;
- addr -= MIPS_INSN16_SIZE;
- if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
- /* Looks like a JR/JALR at [target-1], but it could be
- the second word of a previous JAL/JALX, so record it
- and check back one more. */
- jmpaddr = addr;
- else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
- {
- if (i == 2)
- /* Looks like a JAL/JALX at [target-2], but it could also
- be the second word of a previous JAL/JALX, record it,
- and check back one more. */
- jmpaddr = addr;
- else
- /* Looks like a JAL/JALX at [target-3], so any previously
- recorded JAL/JALX or JR/JALR must be wrong, because:
- >-3: JAL
- -2: JAL-ext (can't be JAL/JALX)
- -1: bdslot (can't be JR/JALR)
- 0: target insn
- Of course it could be another JAL-ext which looks
- like a JAL, but in that case we'd have broken out
- of this loop at [target-2]:
- -4: JAL
- >-3: JAL-ext
- -2: bdslot (can't be jmp)
- -1: JR/JALR
- 0: target insn */
- jmpaddr = 0;
- }
- else
- {
- /* Not a jump instruction: if we're at [target-1] this
- could be the second word of a JAL/JALX, so continue;
- otherwise we're done. */
- if (i > 1)
- break;
- }
- }
- if (jmpaddr)
- bpaddr = jmpaddr;
- }
- return bpaddr;
- }
- /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
- call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
- static int
- mips_is_stub_suffix (const char *suffix, int zero)
- {
- switch (suffix[0])
- {
- case '0':
- return zero && suffix[1] == '\0';
- case '1':
- return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
- case '2':
- case '5':
- case '6':
- case '9':
- return suffix[1] == '\0';
- default:
- return 0;
- }
- }
- /* Return non-zero if MODE is one of the mode infixes used for MIPS16
- call stubs, one of sf, df, sc, or dc. */
- static int
- mips_is_stub_mode (const char *mode)
- {
- return ((mode[0] == 's' || mode[0] == 'd')
- && (mode[1] == 'f' || mode[1] == 'c'));
- }
- /* Code at PC is a compiler-generated stub. Such a stub for a function
- bar might have a name like __fn_stub_bar, and might look like this:
- mfc1 $4, $f13
- mfc1 $5, $f12
- mfc1 $6, $f15
- mfc1 $7, $f14
- followed by (or interspersed with):
- j bar
- or:
- lui $25, %hi(bar)
- addiu $25, $25, %lo(bar)
- jr $25
- ($1 may be used in old code; for robustness we accept any register)
- or, in PIC code:
- lui $28, %hi(_gp_disp)
- addiu $28, $28, %lo(_gp_disp)
- addu $28, $28, $25
- lw $25, %got(bar)
- addiu $25, $25, %lo(bar)
- jr $25
- In the case of a __call_stub_bar stub, the sequence to set up
- arguments might look like this:
- mtc1 $4, $f13
- mtc1 $5, $f12
- mtc1 $6, $f15
- mtc1 $7, $f14
- followed by (or interspersed with) one of the jump sequences above.
- In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
- of J or JR, respectively, followed by:
- mfc1 $2, $f0
- mfc1 $3, $f1
- jr $18
- We are at the beginning of the stub here, and scan down and extract
- the target address from the jump immediate instruction or, if a jump
- register instruction is used, from the register referred. Return
- the value of PC calculated or 0 if inconclusive.
- The limit on the search is arbitrarily set to 20 instructions. FIXME. */
- static CORE_ADDR
- mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int addrreg = MIPS_ZERO_REGNUM;
- CORE_ADDR start_pc = pc;
- CORE_ADDR target_pc = 0;
- CORE_ADDR addr = 0;
- CORE_ADDR gp = 0;
- int status = 0;
- int i;
- for (i = 0;
- status == 0 && target_pc == 0 && i < 20;
- i++, pc += MIPS_INSN32_SIZE)
- {
- ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
- CORE_ADDR imm;
- int rt;
- int rs;
- int rd;
- switch (itype_op (inst))
- {
- case 0: /* SPECIAL */
- switch (rtype_funct (inst))
- {
- case 8: /* JR */
- case 9: /* JALR */
- rs = rtype_rs (inst);
- if (rs == MIPS_GP_REGNUM)
- target_pc = gp; /* Hmm... */
- else if (rs == addrreg)
- target_pc = addr;
- break;
- case 0x21: /* ADDU */
- rt = rtype_rt (inst);
- rs = rtype_rs (inst);
- rd = rtype_rd (inst);
- if (rd == MIPS_GP_REGNUM
- && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
- || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
- gp += start_pc;
- break;
- }
- break;
- case 2: /* J */
- case 3: /* JAL */
- target_pc = jtype_target (inst) << 2;
- target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
- break;
- case 9: /* ADDIU */
- rt = itype_rt (inst);
- rs = itype_rs (inst);
- if (rt == rs)
- {
- imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
- if (rt == MIPS_GP_REGNUM)
- gp += imm;
- else if (rt == addrreg)
- addr += imm;
- }
- break;
- case 0xf: /* LUI */
- rt = itype_rt (inst);
- imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
- if (rt == MIPS_GP_REGNUM)
- gp = imm;
- else if (rt != MIPS_ZERO_REGNUM)
- {
- addrreg = rt;
- addr = imm;
- }
- break;
- case 0x23: /* LW */
- rt = itype_rt (inst);
- rs = itype_rs (inst);
- imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
- if (gp != 0 && rs == MIPS_GP_REGNUM)
- {
- gdb_byte buf[4];
- memset (buf, 0, sizeof (buf));
- status = target_read_memory (gp + imm, buf, sizeof (buf));
- addrreg = rt;
- addr = extract_signed_integer (buf, sizeof (buf), byte_order);
- }
- break;
- }
- }
- return target_pc;
- }
- /* If PC is in a MIPS16 call or return stub, return the address of the
- target PC, which is either the callee or the caller. There are several
- cases which must be handled:
- * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
- and the target PC is in $31 ($ra).
- * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
- and the target PC is in $2.
- * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
- i.e. before the JALR instruction, this is effectively a call stub
- and the target PC is in $2. Otherwise this is effectively
- a return stub and the target PC is in $18.
- * If the PC is at the start of __call_stub_fp_*, i.e. before the
- JAL or JALR instruction, this is effectively a call stub and the
- target PC is buried in the instruction stream. Otherwise this
- is effectively a return stub and the target PC is in $18.
- * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
- stub and the target PC is buried in the instruction stream.
- See the source code for the stubs in gcc/config/mips/mips16.S, or the
- stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
- gory details. */
- static CORE_ADDR
- mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- CORE_ADDR start_addr;
- const char *name;
- size_t prefixlen;
- /* Find the starting address and name of the function containing the PC. */
- if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
- return 0;
- /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
- and the target PC is in $31 ($ra). */
- prefixlen = strlen (mips_str_mips16_ret_stub);
- if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
- && mips_is_stub_mode (name + prefixlen)
- && name[prefixlen + 2] == '\0')
- return get_frame_register_signed
- (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
- /* If the PC is in __mips16_call_stub_*, this is one of the call
- call/return stubs. */
- prefixlen = strlen (mips_str_mips16_call_stub);
- if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
- {
- /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
- and the target PC is in $2. */
- if (mips_is_stub_suffix (name + prefixlen, 0))
- return get_frame_register_signed
- (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
- /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
- i.e. before the JALR instruction, this is effectively a call stub
- and the target PC is in $2. Otherwise this is effectively
- a return stub and the target PC is in $18. */
- else if (mips_is_stub_mode (name + prefixlen)
- && name[prefixlen + 2] == '_'
- && mips_is_stub_suffix (name + prefixlen + 3, 0))
- {
- if (pc == start_addr)
- /* This is the 'call' part of a call stub. The return
- address is in $2. */
- return get_frame_register_signed
- (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
- else
- /* This is the 'return' part of a call stub. The return
- address is in $18. */
- return get_frame_register_signed
- (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
- }
- else
- return 0; /* Not a stub. */
- }
- /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
- compiler-generated call or call/return stubs. */
- if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0
- || strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
- {
- if (pc == start_addr)
- /* This is the 'call' part of a call stub. Call this helper
- to scan through this code for interesting instructions
- and determine the final PC. */
- return mips_get_mips16_fn_stub_pc (frame, pc);
- else
- /* This is the 'return' part of a call stub. The return address
- is in $18. */
- return get_frame_register_signed
- (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
- }
- return 0; /* Not a stub. */
- }
- /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
- This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
- static int
- mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
- {
- CORE_ADDR start_addr;
- size_t prefixlen;
- /* Find the starting address of the function containing the PC. */
- if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
- return 0;
- /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
- the start, i.e. after the JALR instruction, this is effectively
- a return stub. */
- prefixlen = strlen (mips_str_mips16_call_stub);
- if (pc != start_addr
- && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
- && mips_is_stub_mode (name + prefixlen)
- && name[prefixlen + 2] == '_'
- && mips_is_stub_suffix (name + prefixlen + 3, 1))
- return 1;
- /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
- the JAL or JALR instruction, this is effectively a return stub. */
- prefixlen = strlen (mips_str_call_fp_stub);
- if (pc != start_addr
- && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
- return 1;
- /* Consume the .pic. prefix of any PIC stub, this function must return
- true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
- or the call stub path will trigger in handle_inferior_event causing
- it to go astray. */
- prefixlen = strlen (mips_str_pic);
- if (strncmp (name, mips_str_pic, prefixlen) == 0)
- name += prefixlen;
- /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
- prefixlen = strlen (mips_str_mips16_ret_stub);
- if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
- && mips_is_stub_mode (name + prefixlen)
- && name[prefixlen + 2] == '\0')
- return 1;
- return 0; /* Not a stub. */
- }
- /* If the current PC is the start of a non-PIC-to-PIC stub, return the
- PC of the stub target. The stub just loads $t9 and jumps to it,
- so that $t9 has the correct value at function entry. */
- static CORE_ADDR
- mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- struct bound_minimal_symbol msym;
- int i;
- gdb_byte stub_code[16];
- int32_t stub_words[4];
- /* The stub for foo is named ".pic.foo", and is either two
- instructions inserted before foo or a three instruction sequence
- which jumps to foo. */
- msym = lookup_minimal_symbol_by_pc (pc);
- if (msym.minsym == NULL
- || BMSYMBOL_VALUE_ADDRESS (msym) != pc
- || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
- || strncmp (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic.", 5) != 0)
- return 0;
- /* A two-instruction header. */
- if (MSYMBOL_SIZE (msym.minsym) == 8)
- return pc + 8;
- /* A three-instruction (plus delay slot) trampoline. */
- if (MSYMBOL_SIZE (msym.minsym) == 16)
- {
- if (target_read_memory (pc, stub_code, 16) != 0)
- return 0;
- for (i = 0; i < 4; i++)
- stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
- 4, byte_order);
- /* A stub contains these instructions:
- lui t9, %hi(target)
- j target
- addiu t9, t9, %lo(target)
- nop
- This works even for N64, since stubs are only generated with
- -msym32. */
- if ((stub_words[0] & 0xffff0000U) == 0x3c190000
- && (stub_words[1] & 0xfc000000U) == 0x08000000
- && (stub_words[2] & 0xffff0000U) == 0x27390000
- && stub_words[3] == 0x00000000)
- return ((((stub_words[0] & 0x0000ffff) << 16)
- + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
- }
- /* Not a recognized stub. */
- return 0;
- }
- static CORE_ADDR
- mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
- {
- CORE_ADDR requested_pc = pc;
- CORE_ADDR target_pc;
- CORE_ADDR new_pc;
- do
- {
- target_pc = pc;
- new_pc = mips_skip_mips16_trampoline_code (frame, pc);
- if (new_pc)
- pc = new_pc;
- new_pc = find_solib_trampoline_target (frame, pc);
- if (new_pc)
- pc = new_pc;
- new_pc = mips_skip_pic_trampoline_code (frame, pc);
- if (new_pc)
- pc = new_pc;
- }
- while (pc != target_pc);
- return pc != requested_pc ? pc : 0;
- }
- /* Convert a dbx stab register number (from `r' declaration) to a GDB
- [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
- static int
- mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
- {
- int regnum;
- if (num >= 0 && num < 32)
- regnum = num;
- else if (num >= 38 && num < 70)
- regnum = num + mips_regnum (gdbarch)->fp0 - 38;
- else if (num == 70)
- regnum = mips_regnum (gdbarch)->hi;
- else if (num == 71)
- regnum = mips_regnum (gdbarch)->lo;
- else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
- regnum = num + mips_regnum (gdbarch)->dspacc - 72;
- else
- /* This will hopefully (eventually) provoke a warning. Should
- we be calling complaint() here? */
- return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
- return gdbarch_num_regs (gdbarch) + regnum;
- }
- /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
- gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
- static int
- mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
- {
- int regnum;
- if (num >= 0 && num < 32)
- regnum = num;
- else if (num >= 32 && num < 64)
- regnum = num + mips_regnum (gdbarch)->fp0 - 32;
- else if (num == 64)
- regnum = mips_regnum (gdbarch)->hi;
- else if (num == 65)
- regnum = mips_regnum (gdbarch)->lo;
- else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
- regnum = num + mips_regnum (gdbarch)->dspacc - 66;
- else
- /* This will hopefully (eventually) provoke a warning. Should we
- be calling complaint() here? */
- return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
- return gdbarch_num_regs (gdbarch) + regnum;
- }
- static int
- mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
- {
- /* Only makes sense to supply raw registers. */
- gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
- /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
- decide if it is valid. Should instead define a standard sim/gdb
- register numbering scheme. */
- if (gdbarch_register_name (gdbarch,
- gdbarch_num_regs (gdbarch) + regnum) != NULL
- && gdbarch_register_name (gdbarch,
- gdbarch_num_regs (gdbarch)
- + regnum)[0] != '\0')
- return regnum;
- else
- return LEGACY_SIM_REGNO_IGNORE;
- }
- /* Convert an integer into an address. Extracting the value signed
- guarantees a correctly sign extended address. */
- static CORE_ADDR
- mips_integer_to_address (struct gdbarch *gdbarch,
- struct type *type, const gdb_byte *buf)
- {
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
- }
- /* Dummy virtual frame pointer method. This is no more or less accurate
- than most other architectures; we just need to be explicit about it,
- because the pseudo-register gdbarch_sp_regnum will otherwise lead to
- an assertion failure. */
- static void
- mips_virtual_frame_pointer (struct gdbarch *gdbarch,
- CORE_ADDR pc, int *reg, LONGEST *offset)
- {
- *reg = MIPS_SP_REGNUM;
- *offset = 0;
- }
- static void
- mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
- {
- enum mips_abi *abip = (enum mips_abi *) obj;
- const char *name = bfd_get_section_name (abfd, sect);
- if (*abip != MIPS_ABI_UNKNOWN)
- return;
- if (strncmp (name, ".mdebug.", 8) != 0)
- return;
- if (strcmp (name, ".mdebug.abi32") == 0)
- *abip = MIPS_ABI_O32;
- else if (strcmp (name, ".mdebug.abiN32") == 0)
- *abip = MIPS_ABI_N32;
- else if (strcmp (name, ".mdebug.abi64") == 0)
- *abip = MIPS_ABI_N64;
- else if (strcmp (name, ".mdebug.abiO64") == 0)
- *abip = MIPS_ABI_O64;
- else if (strcmp (name, ".mdebug.eabi32") == 0)
- *abip = MIPS_ABI_EABI32;
- else if (strcmp (name, ".mdebug.eabi64") == 0)
- *abip = MIPS_ABI_EABI64;
- else
- warning (_("unsupported ABI %s."), name + 8);
- }
- static void
- mips_find_long_section (bfd *abfd, asection *sect, void *obj)
- {
- int *lbp = (int *) obj;
- const char *name = bfd_get_section_name (abfd, sect);
- if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
- *lbp = 32;
- else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
- *lbp = 64;
- else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
- warning (_("unrecognized .gcc_compiled_longXX"));
- }
- static enum mips_abi
- global_mips_abi (void)
- {
- int i;
- for (i = 0; mips_abi_strings[i] != NULL; i++)
- if (mips_abi_strings[i] == mips_abi_string)
- return (enum mips_abi) i;
- internal_error (__FILE__, __LINE__, _("unknown ABI string"));
- }
- /* Return the default compressed instruction set, either of MIPS16
- or microMIPS, selected when none could have been determined from
- the ELF header of the binary being executed (or no binary has been
- selected. */
- static enum mips_isa
- global_mips_compression (void)
- {
- int i;
- for (i = 0; mips_compression_strings[i] != NULL; i++)
- if (mips_compression_strings[i] == mips_compression_string)
- return (enum mips_isa) i;
- internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
- }
- static void
- mips_register_g_packet_guesses (struct gdbarch *gdbarch)
- {
- /* If the size matches the set of 32-bit or 64-bit integer registers,
- assume that's what we've got. */
- register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
- register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
- /* If the size matches the full set of registers GDB traditionally
- knows about, including floating point, for either 32-bit or
- 64-bit, assume that's what we've got. */
- register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
- register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
- /* Otherwise we don't have a useful guess. */
- }
- static struct value *
- value_of_mips_user_reg (struct frame_info *frame, const void *baton)
- {
- const int *reg_p = baton;
- return value_of_register (*reg_p, frame);
- }
- static struct gdbarch *
- mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
- {
- struct gdbarch *gdbarch;
- struct gdbarch_tdep *tdep;
- int elf_flags;
- enum mips_abi mips_abi, found_abi, wanted_abi;
- int i, num_regs;
- enum mips_fpu_type fpu_type;
- struct tdesc_arch_data *tdesc_data = NULL;
- int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
- const char **reg_names;
- struct mips_regnum mips_regnum, *regnum;
- enum mips_isa mips_isa;
- int dspacc;
- int dspctl;
- /* Fill in the OS dependent register numbers and names. */
- if (info.osabi == GDB_OSABI_IRIX)
- {
- mips_regnum.fp0 = 32;
- mips_regnum.pc = 64;
- mips_regnum.cause = 65;
- mips_regnum.badvaddr = 66;
- mips_regnum.hi = 67;
- mips_regnum.lo = 68;
- mips_regnum.fp_control_status = 69;
- mips_regnum.fp_implementation_revision = 70;
- mips_regnum.dspacc = dspacc = -1;
- mips_regnum.dspctl = dspctl = -1;
- num_regs = 71;
- reg_names = mips_irix_reg_names;
- }
- else if (info.osabi == GDB_OSABI_LINUX)
- {
- mips_regnum.fp0 = 38;
- mips_regnum.pc = 37;
- mips_regnum.cause = 36;
- mips_regnum.badvaddr = 35;
- mips_regnum.hi = 34;
- mips_regnum.lo = 33;
- mips_regnum.fp_control_status = 70;
- mips_regnum.fp_implementation_revision = 71;
- mips_regnum.dspacc = -1;
- mips_regnum.dspctl = -1;
- dspacc = 72;
- dspctl = 78;
- num_regs = 79;
- reg_names = mips_linux_reg_names;
- }
- else
- {
- mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
- mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
- mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
- mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
- mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
- mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
- mips_regnum.fp_control_status = 70;
- mips_regnum.fp_implementation_revision = 71;
- mips_regnum.dspacc = dspacc = -1;
- mips_regnum.dspctl = dspctl = -1;
- num_regs = MIPS_LAST_EMBED_REGNUM + 1;
- if (info.bfd_arch_info != NULL
- && info.bfd_arch_info->mach == bfd_mach_mips3900)
- reg_names = mips_tx39_reg_names;
- else
- reg_names = mips_generic_reg_names;
- }
- /* Check any target description for validity. */
- if (tdesc_has_registers (info.target_desc))
- {
- static const char *const mips_gprs[] = {
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
- "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
- "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
- };
- static const char *const mips_fprs[] = {
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
- "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
- "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
- };
- const struct tdesc_feature *feature;
- int valid_p;
- feature = tdesc_find_feature (info.target_desc,
- "org.gnu.gdb.mips.cpu");
- if (feature == NULL)
- return NULL;
- tdesc_data = tdesc_data_alloc ();
- valid_p = 1;
- for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
- valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
- mips_gprs[i]);
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- mips_regnum.lo, "lo");
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- mips_regnum.hi, "hi");
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- mips_regnum.pc, "pc");
- if (!valid_p)
- {
- tdesc_data_cleanup (tdesc_data);
- return NULL;
- }
- feature = tdesc_find_feature (info.target_desc,
- "org.gnu.gdb.mips.cp0");
- if (feature == NULL)
- {
- tdesc_data_cleanup (tdesc_data);
- return NULL;
- }
- valid_p = 1;
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- mips_regnum.badvaddr, "badvaddr");
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- MIPS_PS_REGNUM, "status");
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- mips_regnum.cause, "cause");
- if (!valid_p)
- {
- tdesc_data_cleanup (tdesc_data);
- return NULL;
- }
- /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
- backend is not prepared for that, though. */
- feature = tdesc_find_feature (info.target_desc,
- "org.gnu.gdb.mips.fpu");
- if (feature == NULL)
- {
- tdesc_data_cleanup (tdesc_data);
- return NULL;
- }
- valid_p = 1;
- for (i = 0; i < 32; i++)
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- i + mips_regnum.fp0, mips_fprs[i]);
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- mips_regnum.fp_control_status,
- "fcsr");
- valid_p
- &= tdesc_numbered_register (feature, tdesc_data,
- mips_regnum.fp_implementation_revision,
- "fir");
- if (!valid_p)
- {
- tdesc_data_cleanup (tdesc_data);
- return NULL;
- }
- if (dspacc >= 0)
- {
- feature = tdesc_find_feature (info.target_desc,
- "org.gnu.gdb.mips.dsp");
- /* The DSP registers are optional; it's OK if they are absent. */
- if (feature != NULL)
- {
- i = 0;
- valid_p = 1;
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- dspacc + i++, "hi1");
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- dspacc + i++, "lo1");
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- dspacc + i++, "hi2");
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- dspacc + i++, "lo2");
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- dspacc + i++, "hi3");
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- dspacc + i++, "lo3");
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- dspctl, "dspctl");
- if (!valid_p)
- {
- tdesc_data_cleanup (tdesc_data);
- return NULL;
- }
- mips_regnum.dspacc = dspacc;
- mips_regnum.dspctl = dspctl;
- }
- }
- /* It would be nice to detect an attempt to use a 64-bit ABI
- when only 32-bit registers are provided. */
- reg_names = NULL;
- }
- /* First of all, extract the elf_flags, if available. */
- if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
- elf_flags = elf_elfheader (info.abfd)->e_flags;
- else if (arches != NULL)
- elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
- else
- elf_flags = 0;
- if (gdbarch_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
- /* Check ELF_FLAGS to see if it specifies the ABI being used. */
- switch ((elf_flags & EF_MIPS_ABI))
- {
- case E_MIPS_ABI_O32:
- found_abi = MIPS_ABI_O32;
- break;
- case E_MIPS_ABI_O64:
- found_abi = MIPS_ABI_O64;
- break;
- case E_MIPS_ABI_EABI32:
- found_abi = MIPS_ABI_EABI32;
- break;
- case E_MIPS_ABI_EABI64:
- found_abi = MIPS_ABI_EABI64;
- break;
- default:
- if ((elf_flags & EF_MIPS_ABI2))
- found_abi = MIPS_ABI_N32;
- else
- found_abi = MIPS_ABI_UNKNOWN;
- break;
- }
- /* GCC creates a pseudo-section whose name describes the ABI. */
- if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
- bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
- /* If we have no useful BFD information, use the ABI from the last
- MIPS architecture (if there is one). */
- if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
- found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
- /* Try the architecture for any hint of the correct ABI. */
- if (found_abi == MIPS_ABI_UNKNOWN
- && info.bfd_arch_info != NULL
- && info.bfd_arch_info->arch == bfd_arch_mips)
- {
- switch (info.bfd_arch_info->mach)
- {
- case bfd_mach_mips3900:
- found_abi = MIPS_ABI_EABI32;
- break;
- case bfd_mach_mips4100:
- case bfd_mach_mips5000:
- found_abi = MIPS_ABI_EABI64;
- break;
- case bfd_mach_mips8000:
- case bfd_mach_mips10000:
- /* On Irix, ELF64 executables use the N64 ABI. The
- pseudo-sections which describe the ABI aren't present
- on IRIX. (Even for executables created by gcc.) */
- if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
- && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
- found_abi = MIPS_ABI_N64;
- else
- found_abi = MIPS_ABI_N32;
- break;
- }
- }
- /* Default 64-bit objects to N64 instead of O32. */
- if (found_abi == MIPS_ABI_UNKNOWN
- && info.abfd != NULL
- && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
- && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
- found_abi = MIPS_ABI_N64;
- if (gdbarch_debug)
- fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
- found_abi);
- /* What has the user specified from the command line? */
- wanted_abi = global_mips_abi ();
- if (gdbarch_debug)
- fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
- wanted_abi);
- /* Now that we have found what the ABI for this binary would be,
- check whether the user is overriding it. */
- if (wanted_abi != MIPS_ABI_UNKNOWN)
- mips_abi = wanted_abi;
- else if (found_abi != MIPS_ABI_UNKNOWN)
- mips_abi = found_abi;
- else
- mips_abi = MIPS_ABI_O32;
- if (gdbarch_debug)
- fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
- mips_abi);
- /* Determine the default compressed ISA. */
- if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
- && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
- mips_isa = ISA_MICROMIPS;
- else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
- && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
- mips_isa = ISA_MIPS16;
- else
- mips_isa = global_mips_compression ();
- mips_compression_string = mips_compression_strings[mips_isa];
- /* Also used when doing an architecture lookup. */
- if (gdbarch_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_gdbarch_init: "
- "mips64_transfers_32bit_regs_p = %d\n",
- mips64_transfers_32bit_regs_p);
- /* Determine the MIPS FPU type. */
- #ifdef HAVE_ELF
- if (info.abfd
- && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
- elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
- Tag_GNU_MIPS_ABI_FP);
- #endif /* HAVE_ELF */
- if (!mips_fpu_type_auto)
- fpu_type = mips_fpu_type;
- else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
- {
- switch (elf_fpu_type)
- {
- case Val_GNU_MIPS_ABI_FP_DOUBLE:
- fpu_type = MIPS_FPU_DOUBLE;
- break;
- case Val_GNU_MIPS_ABI_FP_SINGLE:
- fpu_type = MIPS_FPU_SINGLE;
- break;
- case Val_GNU_MIPS_ABI_FP_SOFT:
- default:
- /* Soft float or unknown. */
- fpu_type = MIPS_FPU_NONE;
- break;
- }
- }
- else if (info.bfd_arch_info != NULL
- && info.bfd_arch_info->arch == bfd_arch_mips)
- switch (info.bfd_arch_info->mach)
- {
- case bfd_mach_mips3900:
- case bfd_mach_mips4100:
- case bfd_mach_mips4111:
- case bfd_mach_mips4120:
- fpu_type = MIPS_FPU_NONE;
- break;
- case bfd_mach_mips4650:
- fpu_type = MIPS_FPU_SINGLE;
- break;
- default:
- fpu_type = MIPS_FPU_DOUBLE;
- break;
- }
- else if (arches != NULL)
- fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
- else
- fpu_type = MIPS_FPU_DOUBLE;
- if (gdbarch_debug)
- fprintf_unfiltered (gdb_stdlog,
- "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
- /* Check for blatant incompatibilities. */
- /* If we have only 32-bit registers, then we can't debug a 64-bit
- ABI. */
- if (info.target_desc
- && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
- && mips_abi != MIPS_ABI_EABI32
- && mips_abi != MIPS_ABI_O32)
- {
- if (tdesc_data != NULL)
- tdesc_data_cleanup (tdesc_data);
- return NULL;
- }
- /* Try to find a pre-existing architecture. */
- for (arches = gdbarch_list_lookup_by_info (arches, &info);
- arches != NULL;
- arches = gdbarch_list_lookup_by_info (arches->next, &info))
- {
- /* MIPS needs to be pedantic about which ABI and the compressed
- ISA variation the object is using. */
- if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
- continue;
- if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
- continue;
- if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
- continue;
- /* Need to be pedantic about which register virtual size is
- used. */
- if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
- != mips64_transfers_32bit_regs_p)
- continue;
- /* Be pedantic about which FPU is selected. */
- if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
- continue;
- if (tdesc_data != NULL)
- tdesc_data_cleanup (tdesc_data);
- return arches->gdbarch;
- }
- /* Need a new architecture. Fill in a target specific vector. */
- tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
- gdbarch = gdbarch_alloc (&info, tdep);
- tdep->elf_flags = elf_flags;
- tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
- tdep->found_abi = found_abi;
- tdep->mips_abi = mips_abi;
- tdep->mips_isa = mips_isa;
- tdep->mips_fpu_type = fpu_type;
- tdep->register_size_valid_p = 0;
- tdep->register_size = 0;
- if (info.target_desc)
- {
- /* Some useful properties can be inferred from the target. */
- if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
- {
- tdep->register_size_valid_p = 1;
- tdep->register_size = 4;
- }
- else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
- {
- tdep->register_size_valid_p = 1;
- tdep->register_size = 8;
- }
- }
- /* Initially set everything according to the default ABI/ISA. */
- set_gdbarch_short_bit (gdbarch, 16);
- set_gdbarch_int_bit (gdbarch, 32);
- set_gdbarch_float_bit (gdbarch, 32);
- set_gdbarch_double_bit (gdbarch, 64);
- set_gdbarch_long_double_bit (gdbarch, 64);
- set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
- set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
- set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
- set_gdbarch_ax_pseudo_register_collect (gdbarch,
- mips_ax_pseudo_register_collect);
- set_gdbarch_ax_pseudo_register_push_stack
- (gdbarch, mips_ax_pseudo_register_push_stack);
- set_gdbarch_elf_make_msymbol_special (gdbarch,
- mips_elf_make_msymbol_special);
- set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
- set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
- set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
- regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
- *regnum = mips_regnum;
- set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
- set_gdbarch_num_regs (gdbarch, num_regs);
- set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
- set_gdbarch_register_name (gdbarch, mips_register_name);
- set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
- tdep->mips_processor_reg_names = reg_names;
- tdep->regnum = regnum;
- switch (mips_abi)
- {
- case MIPS_ABI_O32:
- set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
- set_gdbarch_return_value (gdbarch, mips_o32_return_value);
- tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
- tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
- tdep->default_mask_address_p = 0;
- set_gdbarch_long_bit (gdbarch, 32);
- set_gdbarch_ptr_bit (gdbarch, 32);
- set_gdbarch_long_long_bit (gdbarch, 64);
- break;
- case MIPS_ABI_O64:
- set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
- set_gdbarch_return_value (gdbarch, mips_o64_return_value);
- tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
- tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
- tdep->default_mask_address_p = 0;
- set_gdbarch_long_bit (gdbarch, 32);
- set_gdbarch_ptr_bit (gdbarch, 32);
- set_gdbarch_long_long_bit (gdbarch, 64);
- break;
- case MIPS_ABI_EABI32:
- set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
- set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
- tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
- tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
- tdep->default_mask_address_p = 0;
- set_gdbarch_long_bit (gdbarch, 32);
- set_gdbarch_ptr_bit (gdbarch, 32);
- set_gdbarch_long_long_bit (gdbarch, 64);
- break;
- case MIPS_ABI_EABI64:
- set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
- set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
- tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
- tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
- tdep->default_mask_address_p = 0;
- set_gdbarch_long_bit (gdbarch, 64);
- set_gdbarch_ptr_bit (gdbarch, 64);
- set_gdbarch_long_long_bit (gdbarch, 64);
- break;
- case MIPS_ABI_N32:
- set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
- set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
- tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
- tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
- tdep->default_mask_address_p = 0;
- set_gdbarch_long_bit (gdbarch, 32);
- set_gdbarch_ptr_bit (gdbarch, 32);
- set_gdbarch_long_long_bit (gdbarch, 64);
- set_gdbarch_long_double_bit (gdbarch, 128);
- set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
- break;
- case MIPS_ABI_N64:
- set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
- set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
- tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
- tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
- tdep->default_mask_address_p = 0;
- set_gdbarch_long_bit (gdbarch, 64);
- set_gdbarch_ptr_bit (gdbarch, 64);
- set_gdbarch_long_long_bit (gdbarch, 64);
- set_gdbarch_long_double_bit (gdbarch, 128);
- set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
- break;
- default:
- internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
- }
- /* GCC creates a pseudo-section whose name specifies the size of
- longs, since -mlong32 or -mlong64 may be used independent of
- other options. How those options affect pointer sizes is ABI and
- architecture dependent, so use them to override the default sizes
- set by the ABI. This table shows the relationship between ABI,
- -mlongXX, and size of pointers:
- ABI -mlongXX ptr bits
- --- -------- --------
- o32 32 32
- o32 64 32
- n32 32 32
- n32 64 64
- o64 32 32
- o64 64 64
- n64 32 32
- n64 64 64
- eabi32 32 32
- eabi32 64 32
- eabi64 32 32
- eabi64 64 64
- Note that for o32 and eabi32, pointers are always 32 bits
- regardless of any -mlongXX option. For all others, pointers and
- longs are the same, as set by -mlongXX or set by defaults. */
- if (info.abfd != NULL)
- {
- int long_bit = 0;
- bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
- if (long_bit)
- {
- set_gdbarch_long_bit (gdbarch, long_bit);
- switch (mips_abi)
- {
- case MIPS_ABI_O32:
- case MIPS_ABI_EABI32:
- break;
- case MIPS_ABI_N32:
- case MIPS_ABI_O64:
- case MIPS_ABI_N64:
- case MIPS_ABI_EABI64:
- set_gdbarch_ptr_bit (gdbarch, long_bit);
- break;
- default:
- internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
- }
- }
- }
- /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
- that could indicate -gp32 BUT gas/config/tc-mips.c contains the
- comment:
- ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
- flag in object files because to do so would make it impossible to
- link with libraries compiled without "-gp32". This is
- unnecessarily restrictive.
- We could solve this problem by adding "-gp32" multilibs to gcc,
- but to set this flag before gcc is built with such multilibs will
- break too many systems.''
- But even more unhelpfully, the default linker output target for
- mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
- for 64-bit programs - you need to change the ABI to change this,
- and not all gcc targets support that currently. Therefore using
- this flag to detect 32-bit mode would do the wrong thing given
- the current gcc - it would make GDB treat these 64-bit programs
- as 32-bit programs by default. */
- set_gdbarch_read_pc (gdbarch, mips_read_pc);
- set_gdbarch_write_pc (gdbarch, mips_write_pc);
- /* Add/remove bits from an address. The MIPS needs be careful to
- ensure that all 32 bit addresses are sign extended to 64 bits. */
- set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
- /* Unwind the frame. */
- set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
- set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
- set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
- /* Map debug register numbers onto internal register numbers. */
- set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
- set_gdbarch_ecoff_reg_to_regnum (gdbarch,
- mips_dwarf_dwarf2_ecoff_reg_to_regnum);
- set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
- mips_dwarf_dwarf2_ecoff_reg_to_regnum);
- set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
- /* MIPS version of CALL_DUMMY. */
- set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
- set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
- set_gdbarch_frame_align (gdbarch, mips_frame_align);
- set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
- set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
- set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
- set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
- set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
- set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
- set_gdbarch_remote_breakpoint_from_pc (gdbarch,
- mips_remote_breakpoint_from_pc);
- set_gdbarch_adjust_breakpoint_address (gdbarch,
- mips_adjust_breakpoint_address);
- set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
- set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
- set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
- set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
- set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
- set_gdbarch_register_type (gdbarch, mips_register_type);
- set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
- if (mips_abi == MIPS_ABI_N32)
- set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
- else if (mips_abi == MIPS_ABI_N64)
- set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
- else
- set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
- /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
- HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
- need to all be folded into the target vector. Since they are
- being used as guards for target_stopped_by_watchpoint, why not have
- target_stopped_by_watchpoint return the type of watchpoint that the code
- is sitting on? */
- set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
- set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
- /* NOTE drow/2012-04-25: We overload the core solib trampoline code
- to support MIPS16. This is a bad thing. Make sure not to do it
- if we have an OS ABI that actually supports shared libraries, since
- shared library support is more important. If we have an OS someday
- that supports both shared libraries and MIPS16, we'll have to find
- a better place for these.
- macro/2012-04-25: But that applies to return trampolines only and
- currently no MIPS OS ABI uses shared libraries that have them. */
- set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
- set_gdbarch_single_step_through_delay (gdbarch,
- mips_single_step_through_delay);
- /* Virtual tables. */
- set_gdbarch_vbit_in_delta (gdbarch, 1);
- mips_register_g_packet_guesses (gdbarch);
- /* Hook in OS ABI-specific overrides, if they have been registered. */
- info.tdep_info = (void *) tdesc_data;
- gdbarch_init_osabi (info, gdbarch);
- /* The hook may have adjusted num_regs, fetch the final value and
- set pc_regnum and sp_regnum now that it has been fixed. */
- num_regs = gdbarch_num_regs (gdbarch);
- set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
- set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
- /* Unwind the frame. */
- dwarf2_append_unwinders (gdbarch);
- frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
- frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
- frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
- frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
- frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
- frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
- frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
- frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
- frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
- if (tdesc_data)
- {
- set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
- tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
- /* Override the normal target description methods to handle our
- dual real and pseudo registers. */
- set_gdbarch_register_name (gdbarch, mips_register_name);
- set_gdbarch_register_reggroup_p (gdbarch,
- mips_tdesc_register_reggroup_p);
- num_regs = gdbarch_num_regs (gdbarch);
- set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
- set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
- set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
- }
- /* Add ABI-specific aliases for the registers. */
- if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
- for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
- user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
- value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
- else
- for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
- user_reg_add (gdbarch, mips_o32_aliases[i].name,
- value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
- /* Add some other standard aliases. */
- for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
- user_reg_add (gdbarch, mips_register_aliases[i].name,
- value_of_mips_user_reg, &mips_register_aliases[i].regnum);
- for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
- user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
- value_of_mips_user_reg,
- &mips_numeric_register_aliases[i].regnum);
- return gdbarch;
- }
- static void
- mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
- {
- struct gdbarch_info info;
- /* Force the architecture to update, and (if it's a MIPS architecture)
- mips_gdbarch_init will take care of the rest. */
- gdbarch_info_init (&info);
- gdbarch_update_p (info);
- }
- /* Print out which MIPS ABI is in use. */
- static void
- show_mips_abi (struct ui_file *file,
- int from_tty,
- struct cmd_list_element *ignored_cmd,
- const char *ignored_value)
- {
- if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
- fprintf_filtered
- (file,
- "The MIPS ABI is unknown because the current architecture "
- "is not MIPS.\n");
- else
- {
- enum mips_abi global_abi = global_mips_abi ();
- enum mips_abi actual_abi = mips_abi (target_gdbarch ());
- const char *actual_abi_str = mips_abi_strings[actual_abi];
- if (global_abi == MIPS_ABI_UNKNOWN)
- fprintf_filtered
- (file,
- "The MIPS ABI is set automatically (currently \"%s\").\n",
- actual_abi_str);
- else if (global_abi == actual_abi)
- fprintf_filtered
- (file,
- "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
- actual_abi_str);
- else
- {
- /* Probably shouldn't happen... */
- fprintf_filtered (file,
- "The (auto detected) MIPS ABI \"%s\" is in use "
- "even though the user setting was \"%s\".\n",
- actual_abi_str, mips_abi_strings[global_abi]);
- }
- }
- }
- /* Print out which MIPS compressed ISA encoding is used. */
- static void
- show_mips_compression (struct ui_file *file, int from_tty,
- struct cmd_list_element *c, const char *value)
- {
- fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
- value);
- }
- static void
- mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- if (tdep != NULL)
- {
- int ef_mips_arch;
- int ef_mips_32bitmode;
- /* Determine the ISA. */
- switch (tdep->elf_flags & EF_MIPS_ARCH)
- {
- case E_MIPS_ARCH_1:
- ef_mips_arch = 1;
- break;
- case E_MIPS_ARCH_2:
- ef_mips_arch = 2;
- break;
- case E_MIPS_ARCH_3:
- ef_mips_arch = 3;
- break;
- case E_MIPS_ARCH_4:
- ef_mips_arch = 4;
- break;
- default:
- ef_mips_arch = 0;
- break;
- }
- /* Determine the size of a pointer. */
- ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
- fprintf_unfiltered (file,
- "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
- tdep->elf_flags);
- fprintf_unfiltered (file,
- "mips_dump_tdep: ef_mips_32bitmode = %d\n",
- ef_mips_32bitmode);
- fprintf_unfiltered (file,
- "mips_dump_tdep: ef_mips_arch = %d\n",
- ef_mips_arch);
- fprintf_unfiltered (file,
- "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
- tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
- fprintf_unfiltered (file,
- "mips_dump_tdep: "
- "mips_mask_address_p() %d (default %d)\n",
- mips_mask_address_p (tdep),
- tdep->default_mask_address_p);
- }
- fprintf_unfiltered (file,
- "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
- MIPS_DEFAULT_FPU_TYPE,
- (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
- : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
- : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
- : "???"));
- fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
- MIPS_EABI (gdbarch));
- fprintf_unfiltered (file,
- "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
- MIPS_FPU_TYPE (gdbarch),
- (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
- : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
- : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
- : "???"));
- }
- extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
- void
- _initialize_mips_tdep (void)
- {
- static struct cmd_list_element *mipsfpulist = NULL;
- struct cmd_list_element *c;
- mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
- if (MIPS_ABI_LAST + 1
- != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
- internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
- gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
- mips_pdr_data = register_objfile_data ();
- /* Create feature sets with the appropriate properties. The values
- are not important. */
- mips_tdesc_gp32 = allocate_target_description ();
- set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
- mips_tdesc_gp64 = allocate_target_description ();
- set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
- /* Add root prefix command for all "set mips"/"show mips" commands. */
- add_prefix_cmd ("mips", no_class, set_mips_command,
- _("Various MIPS specific commands."),
- &setmipscmdlist, "set mips ", 0, &setlist);
- add_prefix_cmd ("mips", no_class, show_mips_command,
- _("Various MIPS specific commands."),
- &showmipscmdlist, "show mips ", 0, &showlist);
- /* Allow the user to override the ABI. */
- add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
- &mips_abi_string, _("\
- Set the MIPS ABI used by this program."), _("\
- Show the MIPS ABI used by this program."), _("\
- This option can be set to one of:\n\
- auto - the default ABI associated with the current binary\n\
- o32\n\
- o64\n\
- n32\n\
- n64\n\
- eabi32\n\
- eabi64"),
- mips_abi_update,
- show_mips_abi,
- &setmipscmdlist, &showmipscmdlist);
- /* Allow the user to set the ISA to assume for compressed code if ELF
- file flags don't tell or there is no program file selected. This
- setting is updated whenever unambiguous ELF file flags are interpreted,
- and carried over to subsequent sessions. */
- add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
- &mips_compression_string, _("\
- Set the compressed ISA encoding used by MIPS code."), _("\
- Show the compressed ISA encoding used by MIPS code."), _("\
- Select the compressed ISA encoding used in functions that have no symbol\n\
- information available. The encoding can be set to either of:\n\
- mips16\n\
- micromips\n\
- and is updated automatically from ELF file flags if available."),
- mips_abi_update,
- show_mips_compression,
- &setmipscmdlist, &showmipscmdlist);
- /* Let the user turn off floating point and set the fence post for
- heuristic_proc_start. */
- add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
- _("Set use of MIPS floating-point coprocessor."),
- &mipsfpulist, "set mipsfpu ", 0, &setlist);
- add_cmd ("single", class_support, set_mipsfpu_single_command,
- _("Select single-precision MIPS floating-point coprocessor."),
- &mipsfpulist);
- add_cmd ("double", class_support, set_mipsfpu_double_command,
- _("Select double-precision MIPS floating-point coprocessor."),
- &mipsfpulist);
- add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
- add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
- add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
- add_cmd ("none", class_support, set_mipsfpu_none_command,
- _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
- add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
- add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
- add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
- add_cmd ("auto", class_support, set_mipsfpu_auto_command,
- _("Select MIPS floating-point coprocessor automatically."),
- &mipsfpulist);
- add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
- _("Show current use of MIPS floating-point coprocessor target."),
- &showlist);
- /* We really would like to have both "0" and "unlimited" work, but
- command.c doesn't deal with that. So make it a var_zinteger
- because the user can always use "999999" or some such for unlimited. */
- add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
- &heuristic_fence_post, _("\
- Set the distance searched for the start of a function."), _("\
- Show the distance searched for the start of a function."), _("\
- If you are debugging a stripped executable, GDB needs to search through the\n\
- program for the start of a function. This command sets the distance of the\n\
- search. The only need to set it is when debugging a stripped executable."),
- reinit_frame_cache_sfunc,
- NULL, /* FIXME: i18n: The distance searched for
- the start of a function is %s. */
- &setlist, &showlist);
- /* Allow the user to control whether the upper bits of 64-bit
- addresses should be zeroed. */
- add_setshow_auto_boolean_cmd ("mask-address", no_class,
- &mask_address_var, _("\
- Set zeroing of upper 32 bits of 64-bit addresses."), _("\
- Show zeroing of upper 32 bits of 64-bit addresses."), _("\
- Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
- allow GDB to determine the correct value."),
- NULL, show_mask_address,
- &setmipscmdlist, &showmipscmdlist);
- /* Allow the user to control the size of 32 bit registers within the
- raw remote packet. */
- add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
- &mips64_transfers_32bit_regs_p, _("\
- Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
- _("\
- Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
- _("\
- Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
- that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
- 64 bits for others. Use \"off\" to disable compatibility mode"),
- set_mips64_transfers_32bit_regs,
- NULL, /* FIXME: i18n: Compatibility with 64-bit
- MIPS target that transfers 32-bit
- quantities is %s. */
- &setlist, &showlist);
- /* Debug this files internals. */
- add_setshow_zuinteger_cmd ("mips", class_maintenance,
- &mips_debug, _("\
- Set mips debugging."), _("\
- Show mips debugging."), _("\
- When non-zero, mips specific debugging is enabled."),
- NULL,
- NULL, /* FIXME: i18n: Mips debugging is
- currently %s. */
- &setdebuglist, &showdebuglist);
- }