- /****************************************************************************
- THIS SOFTWARE IS NOT COPYRIGHTED
- HP offers the following for use in the public domain. HP makes no
- warranty with regard to the software or it's performance and the
- user accepts the software "AS IS" with all faults.
- HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
- TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
- OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
- ****************************************************************************/
- /****************************************************************************
- * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
- *
- * Module name: remcom.c $
- * Revision: 1.34 $
- * Date: 91/03/09 12:29:49 $
- * Contributor: Lake Stevens Instrument Division$
- *
- * Description: low level support for gdb debugger. $
- *
- * Considerations: only works on target hardware $
- *
- * Written by: Glenn Engel $
- * ModuleState: Experimental $
- *
- * NOTES: See Below $
- *
- * Modified for M32R by Michael Snyder, Cygnus Support.
- *
- * To enable debugger support, two things need to happen. One, a
- * call to set_debug_traps() is necessary in order to allow any breakpoints
- * or error conditions to be properly intercepted and reported to gdb.
- * Two, a breakpoint needs to be generated to begin communication. This
- * is most easily accomplished by a call to breakpoint(). Breakpoint()
- * simulates a breakpoint by executing a trap #1.
- *
- * The external function exceptionHandler() is
- * used to attach a specific handler to a specific M32R vector number.
- * It should use the same privilege level it runs at. It should
- * install it as an interrupt gate so that interrupts are masked
- * while the handler runs.
- *
- * Because gdb will sometimes write to the stack area to execute function
- * calls, this program cannot rely on using the supervisor stack so it
- * uses it's own stack area reserved in the int array remcomStack.
- *
- *************
- *
- * The following gdb commands are supported:
- *
- * command function Return value
- *
- * g return the value of the CPU registers hex data or ENN
- * G set the value of the CPU registers OK or ENN
- *
- * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
- * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
- * XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN
- * AA..AA
- *
- * c Resume at current address SNN ( signal NN)
- * cAA..AA Continue at address AA..AA SNN
- *
- * s Step one instruction SNN
- * sAA..AA Step one instruction from AA..AA SNN
- *
- * k kill
- *
- * ? What was the last sigval ? SNN (signal NN)
- *
- * All commands and responses are sent with a packet which includes a
- * checksum. A packet consists of
- *
- * $<packet info>#<checksum>.
- *
- * where
- * <packet info> :: <characters representing the command or response>
- * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>>
- *
- * When a packet is received, it is first acknowledged with either '+' or '-'.
- * '+' indicates a successful transfer. '-' indicates a failed transfer.
- *
- * Example:
- *
- * Host: Reply:
- * $m0,10#2a +$00010203040506070809101112131415#42
- *
- ****************************************************************************/
- /************************************************************************
- *
- * external low-level support routines
- */
- extern void putDebugChar (); /* write a single character */
- extern int getDebugChar (); /* read and return a single char */
- extern void exceptionHandler (); /* assign an exception handler */
- /*****************************************************************************
- * BUFMAX defines the maximum number of characters in inbound/outbound buffers
- * at least NUMREGBYTES*2 are needed for register packets
- */
- #define BUFMAX 400
- static char initialized; /* boolean flag. != 0 means we've been initialized */
- int remote_debug;
- /* debug > 0 prints ill-formed commands in valid packets & checksum errors */
- static const unsigned char hexchars[] = "0123456789abcdef";
- #define NUMREGS 24
- /* Number of bytes of registers. */
- #define NUMREGBYTES (NUMREGS * 4)
- enum regnames
- { R0, R1, R2, R3, R4, R5, R6, R7,
- R8, R9, R10, R11, R12, R13, R14, R15,
- PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH
- };
- enum SYS_calls
- {
- SYS_null,
- SYS_exit,
- SYS_open,
- SYS_close,
- SYS_read,
- SYS_write,
- SYS_lseek,
- SYS_unlink,
- SYS_getpid,
- SYS_kill,
- SYS_fstat,
- SYS_sbrk,
- SYS_fork,
- SYS_execve,
- SYS_wait4,
- SYS_link,
- SYS_chdir,
- SYS_stat,
- SYS_utime,
- SYS_chown,
- SYS_chmod,
- SYS_time,
- SYS_pipe
- };
- static int registers[NUMREGS];
- #define STACKSIZE 8096
- static unsigned char remcomInBuffer[BUFMAX];
- static unsigned char remcomOutBuffer[BUFMAX];
- static int remcomStack[STACKSIZE / sizeof (int)];
- static int *stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1];
- static unsigned int save_vectors[18]; /* previous exception vectors */
- /* Indicate to caller of mem2hex or hex2mem that there has been an error. */
- static volatile int mem_err = 0;
- /* Store the vector number here (since GDB only gets the signal
- number through the usual means, and that's not very specific). */
- int gdb_m32r_vector = -1;
- #if 0
- #include "syscall.h" /* for SYS_exit, SYS_write etc. */
- #endif
- /* Global entry points:
- */
- extern void handle_exception (int);
- extern void set_debug_traps (void);
- extern void breakpoint (void);
- /* Local functions:
- */
- static int computeSignal (int);
- static void putpacket (unsigned char *);
- static unsigned char *getpacket (void);
- static unsigned char *mem2hex (unsigned char *, unsigned char *, int, int);
- static unsigned char *hex2mem (unsigned char *, unsigned char *, int, int);
- static int hexToInt (unsigned char **, int *);
- static unsigned char *bin2mem (unsigned char *, unsigned char *, int, int);
- static void stash_registers (void);
- static void restore_registers (void);
- static int prepare_to_step (int);
- static int finish_from_step (void);
- static unsigned long crc32 (unsigned char *, int, unsigned long);
- static void gdb_error (char *, char *);
- static int gdb_putchar (int), gdb_puts (char *), gdb_write (char *, int);
- static unsigned char *strcpy (unsigned char *, const unsigned char *);
- static int strlen (const unsigned char *);
- /*
- * This function does all command procesing for interfacing to gdb.
- */
- void
- handle_exception (int exceptionVector)
- {
- int sigval, stepping;
- int addr, length, i;
- unsigned char *ptr;
- unsigned char buf[16];
- int binary;
- if (!finish_from_step ())
- return; /* "false step": let the target continue */
- gdb_m32r_vector = exceptionVector;
- if (remote_debug)
- {
- mem2hex ((unsigned char *) &exceptionVector, buf, 4, 0);
- gdb_error ("Handle exception %s, ", buf);
- mem2hex ((unsigned char *) ®isters[PC], buf, 4, 0);
- gdb_error ("PC == 0x%s\n", buf);
- }
- /* reply to host that an exception has occurred */
- sigval = computeSignal (exceptionVector);
- ptr = remcomOutBuffer;
- *ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */
- *ptr++ = hexchars[sigval >> 4];
- *ptr++ = hexchars[sigval & 0xf];
- *ptr++ = hexchars[PC >> 4];
- *ptr++ = hexchars[PC & 0xf];
- *ptr++ = ':';
- ptr = mem2hex ((unsigned char *) ®isters[PC], ptr, 4, 0); /* PC */
- *ptr++ = ';';
- *ptr++ = hexchars[R13 >> 4];
- *ptr++ = hexchars[R13 & 0xf];
- *ptr++ = ':';
- ptr = mem2hex ((unsigned char *) ®isters[R13], ptr, 4, 0); /* FP */
- *ptr++ = ';';
- *ptr++ = hexchars[R15 >> 4];
- *ptr++ = hexchars[R15 & 0xf];
- *ptr++ = ':';
- ptr = mem2hex ((unsigned char *) ®isters[R15], ptr, 4, 0); /* SP */
- *ptr++ = ';';
- *ptr++ = 0;
- if (exceptionVector == 0) /* simulated SYS call stuff */
- {
- mem2hex ((unsigned char *) ®isters[PC], buf, 4, 0);
- switch (registers[R0])
- {
- case SYS_exit:
- gdb_error ("Target program has exited at %s\n", buf);
- ptr = remcomOutBuffer;
- *ptr++ = 'W';
- sigval = registers[R1] & 0xff;
- *ptr++ = hexchars[sigval >> 4];
- *ptr++ = hexchars[sigval & 0xf];
- *ptr++ = 0;
- break;
- case SYS_open:
- gdb_error ("Target attempts SYS_open call at %s\n", buf);
- break;
- case SYS_close:
- gdb_error ("Target attempts SYS_close call at %s\n", buf);
- break;
- case SYS_read:
- gdb_error ("Target attempts SYS_read call at %s\n", buf);
- break;
- case SYS_write:
- if (registers[R1] == 1 || /* write to stdout */
- registers[R1] == 2) /* write to stderr */
- { /* (we can do that) */
- registers[R0] =
- gdb_write ((void *) registers[R2], registers[R3]);
- return;
- }
- else
- gdb_error ("Target attempts SYS_write call at %s\n", buf);
- break;
- case SYS_lseek:
- gdb_error ("Target attempts SYS_lseek call at %s\n", buf);
- break;
- case SYS_unlink:
- gdb_error ("Target attempts SYS_unlink call at %s\n", buf);
- break;
- case SYS_getpid:
- gdb_error ("Target attempts SYS_getpid call at %s\n", buf);
- break;
- case SYS_kill:
- gdb_error ("Target attempts SYS_kill call at %s\n", buf);
- break;
- case SYS_fstat:
- gdb_error ("Target attempts SYS_fstat call at %s\n", buf);
- break;
- default:
- gdb_error ("Target attempts unknown SYS call at %s\n", buf);
- break;
- }
- }
- putpacket (remcomOutBuffer);
- stepping = 0;
- while (1 == 1)
- {
- remcomOutBuffer[0] = 0;
- ptr = getpacket ();
- binary = 0;
- switch (*ptr++)
- {
- default: /* Unknown code. Return an empty reply message. */
- break;
- case 'R':
- if (hexToInt (&ptr, &addr))
- registers[PC] = addr;
- strcpy (remcomOutBuffer, "OK");
- break;
- case '!':
- strcpy (remcomOutBuffer, "OK");
- break;
- case 'X': /* XAA..AA,LLLL:<binary data>#cs */
- binary = 1;
- case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
- /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */
- {
- if (hexToInt (&ptr, &addr))
- if (*(ptr++) == ',')
- if (hexToInt (&ptr, &length))
- if (*(ptr++) == ':')
- {
- mem_err = 0;
- if (binary)
- bin2mem (ptr, (unsigned char *) addr, length, 1);
- else
- hex2mem (ptr, (unsigned char *) addr, length, 1);
- if (mem_err)
- {
- strcpy (remcomOutBuffer, "E03");
- gdb_error ("memory fault", "");
- }
- else
- {
- strcpy (remcomOutBuffer, "OK");
- }
- ptr = 0;
- }
- if (ptr)
- {
- strcpy (remcomOutBuffer, "E02");
- }
- }
- break;
- case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
- /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */
- if (hexToInt (&ptr, &addr))
- if (*(ptr++) == ',')
- if (hexToInt (&ptr, &length))
- {
- ptr = 0;
- mem_err = 0;
- mem2hex ((unsigned char *) addr, remcomOutBuffer, length,
- 1);
- if (mem_err)
- {
- strcpy (remcomOutBuffer, "E03");
- gdb_error ("memory fault", "");
- }
- }
- if (ptr)
- {
- strcpy (remcomOutBuffer, "E01");
- }
- break;
- case '?':
- remcomOutBuffer[0] = 'S';
- remcomOutBuffer[1] = hexchars[sigval >> 4];
- remcomOutBuffer[2] = hexchars[sigval % 16];
- remcomOutBuffer[3] = 0;
- break;
- case 'd':
- remote_debug = !(remote_debug); /* toggle debug flag */
- break;
- case 'g': /* return the value of the CPU registers */
- mem2hex ((unsigned char *) registers, remcomOutBuffer, NUMREGBYTES,
- 0);
- break;
- case 'P': /* set the value of a single CPU register - return OK */
- {
- int regno;
- if (hexToInt (&ptr, ®no) && *ptr++ == '=')
- if (regno >= 0 && regno < NUMREGS)
- {
- int stackmode;
- hex2mem (ptr, (unsigned char *) ®isters[regno], 4, 0);
- /*
- * Since we just changed a single CPU register, let's
- * make sure to keep the several stack pointers consistant.
- */
- stackmode = registers[PSW] & 0x80;
- if (regno == R15) /* stack pointer changed */
- { /* need to change SPI or SPU */
- if (stackmode == 0)
- registers[SPI] = registers[R15];
- else
- registers[SPU] = registers[R15];
- }
- else if (regno == SPU) /* "user" stack pointer changed */
- {
- if (stackmode != 0) /* stack in user mode: copy SP */
- registers[R15] = registers[SPU];
- }
- else if (regno == SPI) /* "interrupt" stack pointer changed */
- {
- if (stackmode == 0) /* stack in interrupt mode: copy SP */
- registers[R15] = registers[SPI];
- }
- else if (regno == PSW) /* stack mode may have changed! */
- { /* force SP to either SPU or SPI */
- if (stackmode == 0) /* stack in user mode */
- registers[R15] = registers[SPI];
- else /* stack in interrupt mode */
- registers[R15] = registers[SPU];
- }
- strcpy (remcomOutBuffer, "OK");
- break;
- }
- strcpy (remcomOutBuffer, "E01");
- break;
- }
- case 'G': /* set the value of the CPU registers - return OK */
- hex2mem (ptr, (unsigned char *) registers, NUMREGBYTES, 0);
- strcpy (remcomOutBuffer, "OK");
- break;
- case 's': /* sAA..AA Step one instruction from AA..AA(optional) */
- stepping = 1;
- case 'c': /* cAA..AA Continue from address AA..AA(optional) */
- /* try to read optional parameter, pc unchanged if no parm */
- if (hexToInt (&ptr, &addr))
- registers[PC] = addr;
- if (stepping) /* single-stepping */
- {
- if (!prepare_to_step (0)) /* set up for single-step */
- {
- /* prepare_to_step has already emulated the target insn:
- Send SIGTRAP to gdb, don't resume the target at all. */
- ptr = remcomOutBuffer;
- *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */
- *ptr++ = '0';
- *ptr++ = '5';
- *ptr++ = hexchars[PC >> 4]; /* send PC */
- *ptr++ = hexchars[PC & 0xf];
- *ptr++ = ':';
- ptr = mem2hex ((unsigned char *) ®isters[PC], ptr, 4, 0);
- *ptr++ = ';';
- *ptr++ = hexchars[R13 >> 4]; /* send FP */
- *ptr++ = hexchars[R13 & 0xf];
- *ptr++ = ':';
- ptr =
- mem2hex ((unsigned char *) ®isters[R13], ptr, 4, 0);
- *ptr++ = ';';
- *ptr++ = hexchars[R15 >> 4]; /* send SP */
- *ptr++ = hexchars[R15 & 0xf];
- *ptr++ = ':';
- ptr =
- mem2hex ((unsigned char *) ®isters[R15], ptr, 4, 0);
- *ptr++ = ';';
- *ptr++ = 0;
- break;
- }
- }
- else /* continuing, not single-stepping */
- {
- /* OK, about to do a "continue". First check to see if the
- target pc is on an odd boundary (second instruction in the
- word). If so, we must do a single-step first, because
- ya can't jump or return back to an odd boundary! */
- if ((registers[PC] & 2) != 0)
- prepare_to_step (1);
- }
- return;
- case 'D': /* Detach */
- #if 0
- /* I am interpreting this to mean, release the board from control
- by the remote stub. To do this, I am restoring the original
- (or at least previous) exception vectors.
- */
- for (i = 0; i < 18; i++)
- exceptionHandler (i, save_vectors[i]);
- putpacket ("OK");
- return; /* continue the inferior */
- #else
- strcpy (remcomOutBuffer, "OK");
- break;
- #endif
- case 'q':
- if (*ptr++ == 'C' &&
- *ptr++ == 'R' && *ptr++ == 'C' && *ptr++ == ':')
- {
- unsigned long start, len, our_crc;
- if (hexToInt (&ptr, (int *) &start) &&
- *ptr++ == ',' && hexToInt (&ptr, (int *) &len))
- {
- remcomOutBuffer[0] = 'C';
- our_crc = crc32 ((unsigned char *) start, len, 0xffffffff);
- mem2hex ((char *) &our_crc,
- &remcomOutBuffer[1], sizeof (long), 0);
- } /* else do nothing */
- } /* else do nothing */
- break;
- case 'k': /* kill the program */
- continue;
- } /* switch */
- /* reply to the request */
- putpacket (remcomOutBuffer);
- }
- }
- /* qCRC support */
- /* Table used by the crc32 function to calcuate the checksum. */
- static unsigned long crc32_table[256] = { 0, 0 };
- static unsigned long
- crc32 (unsigned char *buf, int len, unsigned long crc)
- {
- if (!crc32_table[1])
- {
- /* Initialize the CRC table and the decoding table. */
- int i, j;
- unsigned long c;
- for (i = 0; i < 256; i++)
- {
- for (c = i << 24, j = 8; j > 0; --j)
- c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
- crc32_table[i] = c;
- }
- }
- while (len--)
- {
- crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
- buf++;
- }
- return crc;
- }
- static int
- hex (unsigned char ch)
- {
- if ((ch >= 'a') && (ch <= 'f'))
- return (ch - 'a' + 10);
- if ((ch >= '0') && (ch <= '9'))
- return (ch - '0');
- if ((ch >= 'A') && (ch <= 'F'))
- return (ch - 'A' + 10);
- return (-1);
- }
- /* scan for the sequence $<data>#<checksum> */
- unsigned char *
- getpacket (void)
- {
- unsigned char *buffer = &remcomInBuffer[0];
- unsigned char checksum;
- unsigned char xmitcsum;
- int count;
- char ch;
- while (1)
- {
- /* wait around for the start character, ignore all other characters */
- while ((ch = getDebugChar ()) != '$')
- ;
- retry:
- checksum = 0;
- xmitcsum = -1;
- count = 0;
- /* now, read until a # or end of buffer is found */
- while (count < BUFMAX - 1)
- {
- ch = getDebugChar ();
- if (ch == '$')
- goto retry;
- if (ch == '#')
- break;
- checksum = checksum + ch;
- buffer[count] = ch;
- count = count + 1;
- }
- buffer[count] = 0;
- if (ch == '#')
- {
- ch = getDebugChar ();
- xmitcsum = hex (ch) << 4;
- ch = getDebugChar ();
- xmitcsum += hex (ch);
- if (checksum != xmitcsum)
- {
- if (remote_debug)
- {
- unsigned char buf[16];
- mem2hex ((unsigned char *) &checksum, buf, 4, 0);
- gdb_error ("Bad checksum: my count = %s, ", buf);
- mem2hex ((unsigned char *) &xmitcsum, buf, 4, 0);
- gdb_error ("sent count = %s\n", buf);
- gdb_error (" -- Bad buffer: \"%s\"\n", buffer);
- }
- putDebugChar ('-'); /* failed checksum */
- }
- else
- {
- putDebugChar ('+'); /* successful transfer */
- /* if a sequence char is present, reply the sequence ID */
- if (buffer[2] == ':')
- {
- putDebugChar (buffer[0]);
- putDebugChar (buffer[1]);
- return &buffer[3];
- }
- return &buffer[0];
- }
- }
- }
- }
- /* send the packet in buffer. */
- static void
- putpacket (unsigned char *buffer)
- {
- unsigned char checksum;
- int count;
- char ch;
- /* $<packet info>#<checksum>. */
- do
- {
- putDebugChar ('$');
- checksum = 0;
- count = 0;
- while (ch = buffer[count])
- {
- putDebugChar (ch);
- checksum += ch;
- count += 1;
- }
- putDebugChar ('#');
- putDebugChar (hexchars[checksum >> 4]);
- putDebugChar (hexchars[checksum % 16]);
- }
- while (getDebugChar () != '+');
- }
- /* Address of a routine to RTE to if we get a memory fault. */
- static void (*volatile mem_fault_routine) () = 0;
- static void
- set_mem_err (void)
- {
- mem_err = 1;
- }
- /* Check the address for safe access ranges. As currently defined,
- this routine will reject the "expansion bus" address range(s).
- To make those ranges useable, someone must implement code to detect
- whether there's anything connected to the expansion bus. */
- static int
- mem_safe (unsigned char *addr)
- {
- #define BAD_RANGE_ONE_START ((unsigned char *) 0x600000)
- #define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000)
- #define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000)
- #define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000)
- if (addr < BAD_RANGE_ONE_START)
- return 1; /* safe */
- if (addr < BAD_RANGE_ONE_END)
- return 0; /* unsafe */
- if (addr < BAD_RANGE_TWO_START)
- return 1; /* safe */
- if (addr < BAD_RANGE_TWO_END)
- return 0; /* unsafe */
- }
- /* These are separate functions so that they are so short and sweet
- that the compiler won't save any registers (if there is a fault
- to mem_fault, they won't get restored, so there better not be any
- saved). */
- static int
- get_char (unsigned char *addr)
- {
- #if 1
- if (mem_fault_routine && !mem_safe (addr))
- {
- mem_fault_routine ();
- return 0;
- }
- #endif
- return *addr;
- }
- static void
- set_char (unsigned char *addr, unsigned char val)
- {
- #if 1
- if (mem_fault_routine && !mem_safe (addr))
- {
- mem_fault_routine ();
- return;
- }
- #endif
- *addr = val;
- }
- /* Convert the memory pointed to by mem into hex, placing result in buf.
- Return a pointer to the last char put in buf (null).
- If MAY_FAULT is non-zero, then we should set mem_err in response to
- a fault; if zero treat a fault like any other fault in the stub. */
- static unsigned char *
- mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
- {
- int i;
- unsigned char ch;
- if (may_fault)
- mem_fault_routine = set_mem_err;
- for (i = 0; i < count; i++)
- {
- ch = get_char (mem++);
- if (may_fault && mem_err)
- return (buf);
- *buf++ = hexchars[ch >> 4];
- *buf++ = hexchars[ch % 16];
- }
- *buf = 0;
- if (may_fault)
- mem_fault_routine = 0;
- return (buf);
- }
- /* Convert the hex array pointed to by buf into binary to be placed in mem.
- Return a pointer to the character AFTER the last byte written. */
- static unsigned char *
- hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
- {
- int i;
- unsigned char ch;
- if (may_fault)
- mem_fault_routine = set_mem_err;
- for (i = 0; i < count; i++)
- {
- ch = hex (*buf++) << 4;
- ch = ch + hex (*buf++);
- set_char (mem++, ch);
- if (may_fault && mem_err)
- return (mem);
- }
- if (may_fault)
- mem_fault_routine = 0;
- return (mem);
- }
- /* Convert the binary stream in BUF to memory.
- Gdb will escape $, #, and the escape char (0x7d).
- COUNT is the total number of bytes to write into
- memory. */
- static unsigned char *
- bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
- {
- int i;
- unsigned char ch;
- if (may_fault)
- mem_fault_routine = set_mem_err;
- for (i = 0; i < count; i++)
- {
- /* Check for any escaped characters. Be paranoid and
- only unescape chars that should be escaped. */
- if (*buf == 0x7d)
- {
- switch (*(buf + 1))
- {
- case 0x3: /* # */
- case 0x4: /* $ */
- case 0x5d: /* escape char */
- buf++;
- *buf |= 0x20;
- break;
- default:
- /* nothing */
- break;
- }
- }
- set_char (mem++, *buf++);
- if (may_fault && mem_err)
- return mem;
- }
- if (may_fault)
- mem_fault_routine = 0;
- return mem;
- }
- /* this function takes the m32r exception vector and attempts to
- translate this number into a unix compatible signal value */
- static int
- computeSignal (int exceptionVector)
- {
- int sigval;
- switch (exceptionVector)
- {
- case 0:
- sigval = 23;
- break; /* I/O trap */
- case 1:
- sigval = 5;
- break; /* breakpoint */
- case 2:
- sigval = 5;
- break; /* breakpoint */
- case 3:
- sigval = 5;
- break; /* breakpoint */
- case 4:
- sigval = 5;
- break; /* breakpoint */
- case 5:
- sigval = 5;
- break; /* breakpoint */
- case 6:
- sigval = 5;
- break; /* breakpoint */
- case 7:
- sigval = 5;
- break; /* breakpoint */
- case 8:
- sigval = 5;
- break; /* breakpoint */
- case 9:
- sigval = 5;
- break; /* breakpoint */
- case 10:
- sigval = 5;
- break; /* breakpoint */
- case 11:
- sigval = 5;
- break; /* breakpoint */
- case 12:
- sigval = 5;
- break; /* breakpoint */
- case 13:
- sigval = 5;
- break; /* breakpoint */
- case 14:
- sigval = 5;
- break; /* breakpoint */
- case 15:
- sigval = 5;
- break; /* breakpoint */
- case 16:
- sigval = 10;
- break; /* BUS ERROR (alignment) */
- case 17:
- sigval = 2;
- break; /* INTerrupt */
- default:
- sigval = 7;
- break; /* "software generated" */
- }
- return (sigval);
- }
- /**********************************************/
- /* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */
- /* RETURN NUMBER OF CHARS PROCESSED */
- /**********************************************/
- static int
- hexToInt (unsigned char **ptr, int *intValue)
- {
- int numChars = 0;
- int hexValue;
- *intValue = 0;
- while (**ptr)
- {
- hexValue = hex (**ptr);
- if (hexValue >= 0)
- {
- *intValue = (*intValue << 4) | hexValue;
- numChars++;
- }
- else
- break;
- (*ptr)++;
- }
- return (numChars);
- }
- /*
- Table of branch instructions:
- 10B6 RTE return from trap or exception
- 1FCr JMP jump
- 1ECr JL jump and link
- 7Fxx BRA branch
- FFxxxxxx BRA branch (long)
- B09rxxxx BNEZ branch not-equal-zero
- Br1rxxxx BNE branch not-equal
- 7Dxx BNC branch not-condition
- FDxxxxxx BNC branch not-condition (long)
- B0Arxxxx BLTZ branch less-than-zero
- B0Crxxxx BLEZ branch less-equal-zero
- 7Exx BL branch and link
- FExxxxxx BL branch and link (long)
- B0Drxxxx BGTZ branch greater-than-zero
- B0Brxxxx BGEZ branch greater-equal-zero
- B08rxxxx BEQZ branch equal-zero
- Br0rxxxx BEQ branch equal
- 7Cxx BC branch condition
- FCxxxxxx BC branch condition (long)
- */
- static int
- isShortBranch (unsigned char *instr)
- {
- unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */
- if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */
- return 1; /* return from trap or exception */
- if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */
- if ((instr[1] & 0xF0) == 0xC0)
- return 2; /* jump thru a register */
- if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */
- instr0 == 0x7E || instr0 == 0x7F)
- return 3; /* eight bit PC offset */
- return 0;
- }
- static int
- isLongBranch (unsigned char *instr)
- {
- if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */
- instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */
- return 4;
- if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */
- {
- if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */
- (instr[1] & 0xF0) == 0x10)
- return 5;
- if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */
- if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 ||
- (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 ||
- (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0)
- return 6;
- }
- return 0;
- }
- /* if address is NOT on a 4-byte boundary, or high-bit of instr is zero,
- then it's a 2-byte instruction, else it's a 4-byte instruction. */
- #define INSTRUCTION_SIZE(addr) \
- ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4)
- static int
- isBranch (unsigned char *instr)
- {
- if (INSTRUCTION_SIZE (instr) == 2)
- return isShortBranch (instr);
- else
- return isLongBranch (instr);
- }
- static int
- willBranch (unsigned char *instr, int branchCode)
- {
- switch (branchCode)
- {
- case 0:
- return 0; /* not a branch */
- case 1:
- return 1; /* RTE */
- case 2:
- return 1; /* JL or JMP */
- case 3: /* BC, BNC, BL, BRA (short) */
- case 4: /* BC, BNC, BL, BRA (long) */
- switch (instr[0] & 0x0F)
- {
- case 0xC: /* Branch if Condition Register */
- return (registers[CBR] != 0);
- case 0xD: /* Branch if NOT Condition Register */
- return (registers[CBR] == 0);
- case 0xE: /* Branch and Link */
- case 0xF: /* Branch (unconditional) */
- return 1;
- default: /* oops? */
- return 0;
- }
- case 5: /* BNE, BEQ */
- switch (instr[1] & 0xF0)
- {
- case 0x00: /* Branch if r1 equal to r2 */
- return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]);
- case 0x10: /* Branch if r1 NOT equal to r2 */
- return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]);
- default: /* oops? */
- return 0;
- }
- case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */
- switch (instr[1] & 0xF0)
- {
- case 0x80: /* Branch if reg equal to zero */
- return (registers[instr[1] & 0x0F] == 0);
- case 0x90: /* Branch if reg NOT equal to zero */
- return (registers[instr[1] & 0x0F] != 0);
- case 0xA0: /* Branch if reg less than zero */
- return (registers[instr[1] & 0x0F] < 0);
- case 0xB0: /* Branch if reg greater or equal to zero */
- return (registers[instr[1] & 0x0F] >= 0);
- case 0xC0: /* Branch if reg less than or equal to zero */
- return (registers[instr[1] & 0x0F] <= 0);
- case 0xD0: /* Branch if reg greater than zero */
- return (registers[instr[1] & 0x0F] > 0);
- default: /* oops? */
- return 0;
- }
- default: /* oops? */
- return 0;
- }
- }
- static int
- branchDestination (unsigned char *instr, int branchCode)
- {
- switch (branchCode)
- {
- default:
- case 0: /* not a branch */
- return 0;
- case 1: /* RTE */
- return registers[BPC] & ~3; /* pop BPC into PC */
- case 2: /* JL or JMP */
- return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */
- case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */
- return (((int) instr) & ~3) + ((char) instr[1] << 2);
- case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */
- return ((int) instr +
- ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) <<
- 2));
- case 5: /* BNE, BEQ (16-bit relative offset) */
- case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */
- return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2));
- }
- /* An explanatory note: in the last three return expressions, I have
- cast the most-significant byte of the return offset to char.
- What this accomplishes is sign extension. If the other
- less-significant bytes were signed as well, they would get sign
- extended too and, if negative, their leading bits would clobber
- the bits of the more-significant bytes ahead of them. There are
- other ways I could have done this, but sign extension from
- odd-sized integers is always a pain. */
- }
- static void
- branchSideEffects (unsigned char *instr, int branchCode)
- {
- switch (branchCode)
- {
- case 1: /* RTE */
- return; /* I <THINK> this is already handled... */
- case 2: /* JL (or JMP) */
- case 3: /* BL (or BC, BNC, BRA) */
- case 4:
- if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */
- registers[R14] = (registers[PC] & ~3) + 4;
- return;
- default: /* any other branch has no side effects */
- return;
- }
- }
- static struct STEPPING_CONTEXT
- {
- int stepping; /* true when we've started a single-step */
- unsigned long target_addr; /* the instr we're trying to execute */
- unsigned long target_size; /* the size of the target instr */
- unsigned long noop_addr; /* where we've inserted a no-op, if any */
- unsigned long trap1_addr; /* the trap following the target instr */
- unsigned long trap2_addr; /* the trap at a branch destination, if any */
- unsigned short noop_save; /* instruction overwritten by our no-op */
- unsigned short trap1_save; /* instruction overwritten by trap1 */
- unsigned short trap2_save; /* instruction overwritten by trap2 */
- unsigned short continue_p; /* true if NOT returning to gdb after step */
- } stepping;
- /* Function: prepare_to_step
- Called from handle_exception to prepare the user program to single-step.
- Places a trap instruction after the target instruction, with special
- extra handling for branch instructions and for instructions in the
- second half-word of a word.
- Returns: True if we should actually execute the instruction;
- False if we are going to emulate executing the instruction,
- in which case we simply report to GDB that the instruction
- has already been executed. */
- #define TRAP1 0x10f1; /* trap #1 instruction */
- #define NOOP 0x7000; /* noop instruction */
- static unsigned short trap1 = TRAP1;
- static unsigned short noop = NOOP;
- static int
- prepare_to_step (continue_p)
- int continue_p; /* if this isn't REALLY a single-step (see below) */
- {
- unsigned long pc = registers[PC];
- int branchCode = isBranch ((unsigned char *) pc);
- unsigned char *p;
- /* zero out the stepping context
- (paranoia -- it should already be zeroed) */
- for (p = (unsigned char *) &stepping;
- p < ((unsigned char *) &stepping) + sizeof (stepping); p++)
- *p = 0;
- if (branchCode != 0) /* next instruction is a branch */
- {
- branchSideEffects ((unsigned char *) pc, branchCode);
- if (willBranch ((unsigned char *) pc, branchCode))
- registers[PC] = branchDestination ((unsigned char *) pc, branchCode);
- else
- registers[PC] = pc + INSTRUCTION_SIZE (pc);
- return 0; /* branch "executed" -- just notify GDB */
- }
- else if (((int) pc & 2) != 0) /* "second-slot" instruction */
- {
- /* insert no-op before pc */
- stepping.noop_addr = pc - 2;
- stepping.noop_save = *(unsigned short *) stepping.noop_addr;
- *(unsigned short *) stepping.noop_addr = noop;
- /* insert trap after pc */
- stepping.trap1_addr = pc + 2;
- stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
- *(unsigned short *) stepping.trap1_addr = trap1;
- }
- else /* "first-slot" instruction */
- {
- /* insert trap after pc */
- stepping.trap1_addr = pc + INSTRUCTION_SIZE (pc);
- stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
- *(unsigned short *) stepping.trap1_addr = trap1;
- }
- /* "continue_p" means that we are actually doing a continue, and not
- being requested to single-step by GDB. Sometimes we have to do
- one single-step before continuing, because the PC is on a half-word
- boundary. There's no way to simply resume at such an address. */
- stepping.continue_p = continue_p;
- stepping.stepping = 1; /* starting a single-step */
- return 1;
- }
- /* Function: finish_from_step
- Called from handle_exception to finish up when the user program
- returns from a single-step. Replaces the instructions that had
- been overwritten by traps or no-ops,
- Returns: True if we should notify GDB that the target stopped.
- False if we only single-stepped because we had to before we
- could continue (ie. we were trying to continue at a
- half-word boundary). In that case don't notify GDB:
- just "continue continuing". */
- static int
- finish_from_step (void)
- {
- if (stepping.stepping) /* anything to do? */
- {
- int continue_p = stepping.continue_p;
- unsigned char *p;
- if (stepping.noop_addr) /* replace instr "under" our no-op */
- *(unsigned short *) stepping.noop_addr = stepping.noop_save;
- if (stepping.trap1_addr) /* replace instr "under" our trap */
- *(unsigned short *) stepping.trap1_addr = stepping.trap1_save;
- if (stepping.trap2_addr) /* ditto our other trap, if any */
- *(unsigned short *) stepping.trap2_addr = stepping.trap2_save;
- for (p = (unsigned char *) &stepping; /* zero out the stepping context */
- p < ((unsigned char *) &stepping) + sizeof (stepping); p++)
- *p = 0;
- return !(continue_p);
- }
- else /* we didn't single-step, therefore this must be a legitimate stop */
- return 1;
- }
- struct PSWreg
- { /* separate out the bit flags in the PSW register */
- int pad1:16;
- int bsm:1;
- int bie:1;
- int pad2:5;
- int bc:1;
- int sm:1;
- int ie:1;
- int pad3:5;
- int c:1;
- } *psw;
- /* Upon entry the value for LR to save has been pushed.
- We unpush that so that the value for the stack pointer saved is correct.
- Upon entry, all other registers are assumed to have not been modified
- since the interrupt/trap occured. */
- asm ("\n\
- stash_registers:\n\
- push r0\n\
- push r1\n\
- seth r1, #shigh(registers)\n\
- add3 r1, r1, #low(registers)\n\
- pop r0 ; r1\n\
- st r0, @(4,r1)\n\
- pop r0 ; r0\n\
- st r0, @r1\n\
- addi r1, #4 ; only add 4 as subsequent saves are `pre inc'\n\
- st r2, @+r1\n\
- st r3, @+r1\n\
- st r4, @+r1\n\
- st r5, @+r1\n\
- st r6, @+r1\n\
- st r7, @+r1\n\
- st r8, @+r1\n\
- st r9, @+r1\n\
- st r10, @+r1\n\
- st r11, @+r1\n\
- st r12, @+r1\n\
- st r13, @+r1 ; fp\n\
- pop r0 ; lr (r14)\n\
- st r0, @+r1\n\
- st sp, @+r1 ; sp contains right value at this point\n\
- mvfc r0, cr0\n\
- st r0, @+r1 ; cr0 == PSW\n\
- mvfc r0, cr1\n\
- st r0, @+r1 ; cr1 == CBR\n\
- mvfc r0, cr2\n\
- st r0, @+r1 ; cr2 == SPI\n\
- mvfc r0, cr3\n\
- st r0, @+r1 ; cr3 == SPU\n\
- mvfc r0, cr6\n\
- st r0, @+r1 ; cr6 == BPC\n\
- st r0, @+r1 ; PC == BPC\n\
- mvfaclo r0\n\
- st r0, @+r1 ; ACCL\n\
- mvfachi r0\n\
- st r0, @+r1 ; ACCH\n\
- jmp lr");
- /* C routine to clean up what stash_registers did.
- It is called after calling stash_registers.
- This is separate from stash_registers as we want to do this in C
- but doing stash_registers in C isn't straightforward. */
- static void
- cleanup_stash (void)
- {
- psw = (struct PSWreg *) ®isters[PSW]; /* fields of PSW register */
- psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */
- psw->ie = psw->bie;
- psw->c = psw->bc;
- registers[CBR] = psw->bc; /* fix up pre-trap "C" register */
- #if 0 /* FIXME: Was in previous version. Necessary?
- (Remember that we use the "rte" insn to return from the
- trap/interrupt so the values of bsm, bie, bc are important. */
- psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */
- #endif
- /* FIXME: Copied from previous version. This can probably be deleted
- since methinks stash_registers has already done this. */
- registers[PC] = registers[BPC]; /* pre-trap PC */
- /* FIXME: Copied from previous version. Necessary? */
- if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */
- registers[SPU] = registers[R15];
- else
- registers[SPI] = registers[R15];
- }
- asm ("\n\
- restore_and_return:\n\
- seth r0, #shigh(registers+8)\n\
- add3 r0, r0, #low(registers+8)\n\
- ld r2, @r0+ ; restore r2\n\
- ld r3, @r0+ ; restore r3\n\
- ld r4, @r0+ ; restore r4\n\
- ld r5, @r0+ ; restore r5\n\
- ld r6, @r0+ ; restore r6\n\
- ld r7, @r0+ ; restore r7\n\
- ld r8, @r0+ ; restore r8\n\
- ld r9, @r0+ ; restore r9\n\
- ld r10, @r0+ ; restore r10\n\
- ld r11, @r0+ ; restore r11\n\
- ld r12, @r0+ ; restore r12\n\
- ld r13, @r0+ ; restore r13\n\
- ld r14, @r0+ ; restore r14\n\
- ld r15, @r0+ ; restore r15\n\
- ld r1, @r0+ ; restore cr0 == PSW\n\
- mvtc r1, cr0\n\
- ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only)\n\
- mvtc r1, cr1\n\
- ld r1, @r0+ ; restore cr2 == SPI\n\
- mvtc r1, cr2\n\
- ld r1, @r0+ ; restore cr3 == SPU\n\
- mvtc r1, cr3\n\
- addi r0, #4 ; skip BPC\n\
- ld r1, @r0+ ; restore cr6 (BPC) == PC\n\
- mvtc r1, cr6\n\
- ld r1, @r0+ ; restore ACCL\n\
- mvtaclo r1\n\
- ld r1, @r0+ ; restore ACCH\n\
- mvtachi r1\n\
- seth r0, #shigh(registers)\n\
- add3 r0, r0, #low(registers)\n\
- ld r1, @(4,r0) ; restore r1\n\
- ld r0, @r0 ; restore r0\n\
- rte");
- /* General trap handler, called after the registers have been stashed.
- NUM is the trap/exception number. */
- static void
- process_exception (int num)
- {
- cleanup_stash ();
- asm volatile ("\n\
- seth r1, #shigh(stackPtr)\n\
- add3 r1, r1, #low(stackPtr)\n\
- ld r15, @r1 ; setup local stack (protect user stack)\n\
- mv r0, %0\n\
- bl handle_exception\n\
- bl restore_and_return"::"r" (num):"r0", "r1");
- }
- void _catchException0 ();
- asm ("\n\
- _catchException0:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #0\n\
- bl process_exception");
- void _catchException1 ();
- asm ("\n\
- _catchException1:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- bl cleanup_stash\n\
- seth r1, #shigh(stackPtr)\n\
- add3 r1, r1, #low(stackPtr)\n\
- ld r15, @r1 ; setup local stack (protect user stack)\n\
- seth r1, #shigh(registers + 21*4) ; PC\n\
- add3 r1, r1, #low(registers + 21*4)\n\
- ld r0, @r1\n\
- addi r0, #-4 ; back up PC for breakpoint trap.\n\
- st r0, @r1 ; FIXME: what about bp in right slot?\n\
- ldi r0, #1\n\
- bl handle_exception\n\
- bl restore_and_return");
- void _catchException2 ();
- asm ("\n\
- _catchException2:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #2\n\
- bl process_exception");
- void _catchException3 ();
- asm ("\n\
- _catchException3:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #3\n\
- bl process_exception");
- void _catchException4 ();
- asm ("\n\
- _catchException4:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #4\n\
- bl process_exception");
- void _catchException5 ();
- asm ("\n\
- _catchException5:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #5\n\
- bl process_exception");
- void _catchException6 ();
- asm ("\n\
- _catchException6:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #6\n\
- bl process_exception");
- void _catchException7 ();
- asm ("\n\
- _catchException7:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #7\n\
- bl process_exception");
- void _catchException8 ();
- asm ("\n\
- _catchException8:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #8\n\
- bl process_exception");
- void _catchException9 ();
- asm ("\n\
- _catchException9:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #9\n\
- bl process_exception");
- void _catchException10 ();
- asm ("\n\
- _catchException10:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #10\n\
- bl process_exception");
- void _catchException11 ();
- asm ("\n\
- _catchException11:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #11\n\
- bl process_exception");
- void _catchException12 ();
- asm ("\n\
- _catchException12:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #12\n\
- bl process_exception");
- void _catchException13 ();
- asm ("\n\
- _catchException13:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #13\n\
- bl process_exception");
- void _catchException14 ();
- asm ("\n\
- _catchException14:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #14\n\
- bl process_exception");
- void _catchException15 ();
- asm ("\n\
- _catchException15:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #15\n\
- bl process_exception");
- void _catchException16 ();
- asm ("\n\
- _catchException16:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #16\n\
- bl process_exception");
- void _catchException17 ();
- asm ("\n\
- _catchException17:\n\
- push lr\n\
- bl stash_registers\n\
- ; Note that at this point the pushed value of `lr' has been popped\n\
- ldi r0, #17\n\
- bl process_exception");
- /* this function is used to set up exception handlers for tracing and
- breakpoints */
- void
- set_debug_traps (void)
- {
- /* extern void remcomHandler(); */
- int i;
- for (i = 0; i < 18; i++) /* keep a copy of old vectors */
- if (save_vectors[i] == 0) /* only copy them the first time */
- save_vectors[i] = getExceptionHandler (i);
- stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1];
- exceptionHandler (0, _catchException0);
- exceptionHandler (1, _catchException1);
- exceptionHandler (2, _catchException2);
- exceptionHandler (3, _catchException3);
- exceptionHandler (4, _catchException4);
- exceptionHandler (5, _catchException5);
- exceptionHandler (6, _catchException6);
- exceptionHandler (7, _catchException7);
- exceptionHandler (8, _catchException8);
- exceptionHandler (9, _catchException9);
- exceptionHandler (10, _catchException10);
- exceptionHandler (11, _catchException11);
- exceptionHandler (12, _catchException12);
- exceptionHandler (13, _catchException13);
- exceptionHandler (14, _catchException14);
- exceptionHandler (15, _catchException15);
- exceptionHandler (16, _catchException16);
- /* exceptionHandler (17, _catchException17); */
- initialized = 1;
- }
- /* This function will generate a breakpoint exception. It is used at the
- beginning of a program to sync up with a debugger and can be used
- otherwise as a quick means to stop program execution and "break" into
- the debugger. */
- #define BREAKPOINT() asm volatile (" trap #2");
- void
- breakpoint (void)
- {
- if (initialized)
- BREAKPOINT ();
- }
- /* STDOUT section:
- Stuff pertaining to simulating stdout by sending chars to gdb to be echoed.
- Functions: gdb_putchar(char ch)
- gdb_puts(char *str)
- gdb_write(char *str, int len)
- gdb_error(char *format, char *parm)
- */
- /* Function: gdb_putchar(int)
- Make gdb write a char to stdout.
- Returns: the char */
- static int
- gdb_putchar (int ch)
- {
- char buf[4];
- buf[0] = 'O';
- buf[1] = hexchars[ch >> 4];
- buf[2] = hexchars[ch & 0x0F];
- buf[3] = 0;
- putpacket (buf);
- return ch;
- }
- /* Function: gdb_write(char *, int)
- Make gdb write n bytes to stdout (not assumed to be null-terminated).
- Returns: number of bytes written */
- static int
- gdb_write (char *data, int len)
- {
- char *buf, *cpy;
- int i;
- buf = remcomOutBuffer;
- buf[0] = 'O';
- i = 0;
- while (i < len)
- {
- for (cpy = buf + 1;
- i < len && cpy < buf + sizeof (remcomOutBuffer) - 3; i++)
- {
- *cpy++ = hexchars[data[i] >> 4];
- *cpy++ = hexchars[data[i] & 0x0F];
- }
- *cpy = 0;
- putpacket (buf);
- }
- return len;
- }
- /* Function: gdb_puts(char *)
- Make gdb write a null-terminated string to stdout.
- Returns: the length of the string */
- static int
- gdb_puts (char *str)
- {
- return gdb_write (str, strlen (str));
- }
- /* Function: gdb_error(char *, char *)
- Send an error message to gdb's stdout.
- First string may have 1 (one) optional "%s" in it, which
- will cause the optional second string to be inserted. */
- static void
- gdb_error (char *format, char *parm)
- {
- char buf[400], *cpy;
- int len;
- if (remote_debug)
- {
- if (format && *format)
- len = strlen (format);
- else
- return; /* empty input */
- if (parm && *parm)
- len += strlen (parm);
- for (cpy = buf; *format;)
- {
- if (format[0] == '%' && format[1] == 's') /* include second string */
- {
- format += 2; /* advance two chars instead of just one */
- while (parm && *parm)
- *cpy++ = *parm++;
- }
- else
- *cpy++ = *format++;
- }
- *cpy = '\0';
- gdb_puts (buf);
- }
- }
- static unsigned char *
- strcpy (unsigned char *dest, const unsigned char *src)
- {
- unsigned char *ret = dest;
- if (dest && src)
- {
- while (*src)
- *dest++ = *src++;
- *dest = 0;
- }
- return ret;
- }
- static int
- strlen (const unsigned char *src)
- {
- int ret;
- for (ret = 0; *src; src++)
- ret++;
- return ret;
- }
- #if 0
- void
- exit (code)
- int code;
- {
- _exit (code);
- }
- int
- atexit (void *p)
- {
- return 0;
- }
- void
- abort (void)
- {
- _exit (1);
- }
- #endif