gdb/objfiles.h - gdb

Global variables defined

Data types defined

Functions defined

Macros defined

Source code

  1. /* Definitions for symbol file management in GDB.

  2.    Copyright (C) 1992-2015 Free Software Foundation, Inc.

  3.    This file is part of GDB.

  4.    This program is free software; you can redistribute it and/or modify
  5.    it under the terms of the GNU General Public License as published by
  6.    the Free Software Foundation; either version 3 of the License, or
  7.    (at your option) any later version.

  8.    This program is distributed in the hope that it will be useful,
  9.    but WITHOUT ANY WARRANTY; without even the implied warranty of
  10.    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11.    GNU General Public License for more details.

  12.    You should have received a copy of the GNU General Public License
  13.    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

  14. #if !defined (OBJFILES_H)
  15. #define OBJFILES_H

  16. #include "gdb_obstack.h"        /* For obstack internals.  */
  17. #include "symfile.h"                /* For struct psymbol_allocation_list.  */
  18. #include "progspace.h"
  19. #include "registry.h"
  20. #include "gdb_bfd.h"

  21. struct bcache;
  22. struct htab;
  23. struct objfile_data;

  24. /* This structure maintains information on a per-objfile basis about the
  25.    "entry point" of the objfile, and the scope within which the entry point
  26.    exists.  It is possible that gdb will see more than one objfile that is
  27.    executable, each with its own entry point.

  28.    For example, for dynamically linked executables in SVR4, the dynamic linker
  29.    code is contained within the shared C library, which is actually executable
  30.    and is run by the kernel first when an exec is done of a user executable
  31.    that is dynamically linked.  The dynamic linker within the shared C library
  32.    then maps in the various program segments in the user executable and jumps
  33.    to the user executable's recorded entry point, as if the call had been made
  34.    directly by the kernel.

  35.    The traditional gdb method of using this info was to use the
  36.    recorded entry point to set the entry-file's lowpc and highpc from
  37.    the debugging information, where these values are the starting
  38.    address (inclusive) and ending address (exclusive) of the
  39.    instruction space in the executable which correspond to the
  40.    "startup file", i.e. crt0.o in most cases.  This file is assumed to
  41.    be a startup file and frames with pc's inside it are treated as
  42.    nonexistent.  Setting these variables is necessary so that
  43.    backtraces do not fly off the bottom of the stack.

  44.    NOTE: cagney/2003-09-09: It turns out that this "traditional"
  45.    method doesn't work.  Corinna writes: ``It turns out that the call
  46.    to test for "inside entry file" destroys a meaningful backtrace
  47.    under some conditions.  E.g. the backtrace tests in the asm-source
  48.    testcase are broken for some targets.  In this test the functions
  49.    are all implemented as part of one file and the testcase is not
  50.    necessarily linked with a start file (depending on the target).
  51.    What happens is, that the first frame is printed normaly and
  52.    following frames are treated as being inside the enttry file then.
  53.    This way, only the #0 frame is printed in the backtrace output.''
  54.    Ref "frame.c" "NOTE: vinschen/2003-04-01".

  55.    Gdb also supports an alternate method to avoid running off the bottom
  56.    of the stack.

  57.    There are two frames that are "special", the frame for the function
  58.    containing the process entry point, since it has no predecessor frame,
  59.    and the frame for the function containing the user code entry point
  60.    (the main() function), since all the predecessor frames are for the
  61.    process startup code.  Since we have no guarantee that the linked
  62.    in startup modules have any debugging information that gdb can use,
  63.    we need to avoid following frame pointers back into frames that might
  64.    have been built in the startup code, as we might get hopelessly
  65.    confused.  However, we almost always have debugging information
  66.    available for main().

  67.    These variables are used to save the range of PC values which are
  68.    valid within the main() function and within the function containing
  69.    the process entry point.  If we always consider the frame for
  70.    main() as the outermost frame when debugging user code, and the
  71.    frame for the process entry point function as the outermost frame
  72.    when debugging startup code, then all we have to do is have
  73.    DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
  74.    current PC is within the range specified by these variables.  In
  75.    essence, we set "ceilings" in the frame chain beyond which we will
  76.    not proceed when following the frame chain back up the stack.

  77.    A nice side effect is that we can still debug startup code without
  78.    running off the end of the frame chain, assuming that we have usable
  79.    debugging information in the startup modules, and if we choose to not
  80.    use the block at main, or can't find it for some reason, everything
  81.    still works as before.  And if we have no startup code debugging
  82.    information but we do have usable information for main(), backtraces
  83.    from user code don't go wandering off into the startup code.  */

  84. struct entry_info
  85.   {
  86.     /* The unrelocated value we should use for this objfile entry point.  */
  87.     CORE_ADDR entry_point;

  88.     /* The index of the section in which the entry point appears.  */
  89.     int the_bfd_section_index;

  90.     /* Set to 1 iff ENTRY_POINT contains a valid value.  */
  91.     unsigned entry_point_p : 1;

  92.     /* Set to 1 iff this object was initialized.  */
  93.     unsigned initialized : 1;
  94.   };

  95. /* Sections in an objfile.  The section offsets are stored in the
  96.    OBJFILE.  */

  97. struct obj_section
  98.   {
  99.     struct bfd_section *the_bfd_section;        /* BFD section pointer */

  100.     /* Objfile this section is part of.  */
  101.     struct objfile *objfile;

  102.     /* True if this "overlay section" is mapped into an "overlay region".  */
  103.     int ovly_mapped;
  104.   };

  105. /* Relocation offset applied to S.  */
  106. #define obj_section_offset(s)                                                \
  107.   (((s)->objfile->section_offsets)->offsets[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])

  108. /* The memory address of section S (vma + offset).  */
  109. #define obj_section_addr(s)                                                      \
  110.   (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section)                \
  111.    + obj_section_offset (s))

  112. /* The one-passed-the-end memory address of section S
  113.    (vma + size + offset).  */
  114. #define obj_section_endaddr(s)                                                \
  115.   (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section)                \
  116.    + bfd_get_section_size ((s)->the_bfd_section)                        \
  117.    + obj_section_offset (s))

  118. /* The "objstats" structure provides a place for gdb to record some
  119.    interesting information about its internal state at runtime, on a
  120.    per objfile basis, such as information about the number of symbols
  121.    read, size of string table (if any), etc.  */

  122. struct objstats
  123.   {
  124.     int n_psyms;                /* Number of partial symbols read */
  125.     int n_syms;                        /* Number of full symbols read */
  126.     int n_stabs;                /* Number of ".stabs" read (if applicable) */
  127.     int n_types;                /* Number of types */
  128.     int sz_strtab;                /* Size of stringtable, (if applicable) */
  129.   };

  130. #define OBJSTAT(objfile, expr) (objfile -> stats.expr)
  131. #define OBJSTATS struct objstats stats
  132. extern void print_objfile_statistics (void);
  133. extern void print_symbol_bcache_statistics (void);

  134. /* Number of entries in the minimal symbol hash table.  */
  135. #define MINIMAL_SYMBOL_HASH_SIZE 2039

  136. /* Some objfile data is hung off the BFD.  This enables sharing of the
  137.    data across all objfiles using the BFD.  The data is stored in an
  138.    instance of this structure, and associated with the BFD using the
  139.    registry system.  */

  140. struct objfile_per_bfd_storage
  141. {
  142.   /* The storage has an obstack of its own.  */

  143.   struct obstack storage_obstack;

  144.   /* Byte cache for file names.  */

  145.   struct bcache *filename_cache;

  146.   /* Byte cache for macros.  */
  147.   struct bcache *macro_cache;

  148.   /* The gdbarch associated with the BFD.  Note that this gdbarch is
  149.      determined solely from BFD information, without looking at target
  150.      information.  The gdbarch determined from a running target may
  151.      differ from this e.g. with respect to register types and names.  */

  152.   struct gdbarch *gdbarch;

  153.   /* Hash table for mapping symbol names to demangled names.  Each
  154.      entry in the hash table is actually two consecutive strings,
  155.      both null-terminated; the first one is a mangled or linkage
  156.      name, and the second is the demangled name or just a zero byte
  157.      if the name doesn't demangle.  */
  158.   struct htab *demangled_names_hash;

  159.   /* The per-objfile information about the entry point, the scope (file/func)
  160.      containing the entry point, and the scope of the user's main() func.  */

  161.   struct entry_info ei;

  162.   /* The name and language of any "main" found in this objfile.  The
  163.      name can be NULL, which means that the information was not
  164.      recorded.  */

  165.   const char *name_of_main;
  166.   enum language language_of_main;

  167.   /* Each file contains a pointer to an array of minimal symbols for all
  168.      global symbols that are defined within the file.  The array is
  169.      terminated by a "null symbol", one that has a NULL pointer for the
  170.      name and a zero value for the address.  This makes it easy to walk
  171.      through the array when passed a pointer to somewhere in the middle
  172.      of it.  There is also a count of the number of symbols, which does
  173.      not include the terminating null symbol.  The array itself, as well
  174.      as all the data that it points to, should be allocated on the
  175.      objfile_obstack for this file.  */

  176.   struct minimal_symbol *msymbols;
  177.   int minimal_symbol_count;

  178.   /* The number of minimal symbols read, before any minimal symbol
  179.      de-duplication is applied.  Note in particular that this has only
  180.      a passing relationship with the actual size of the table above;
  181.      use minimal_symbol_count if you need the true size.  */
  182.   int n_minsyms;

  183.   /* This is true if minimal symbols have already been read.  Symbol
  184.      readers can use this to bypass minimal symbol reading.  Also, the
  185.      minimal symbol table management code in minsyms.c uses this to
  186.      suppress new minimal symbols.  You might think that MSYMBOLS or
  187.      MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
  188.      for multiple readers to install minimal symbols into a given
  189.      per-BFD.  */

  190.   unsigned int minsyms_read : 1;

  191.   /* This is a hash table used to index the minimal symbols by name.  */

  192.   struct minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE];

  193.   /* This hash table is used to index the minimal symbols by their
  194.      demangled names.  */

  195.   struct minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE];
  196. };

  197. /* Master structure for keeping track of each file from which
  198.    gdb reads symbols.  There are several ways these get allocated: 1.
  199.    The main symbol file, symfile_objfile, set by the symbol-file command,
  200.    2.  Additional symbol files added by the add-symbol-file command,
  201.    3.  Shared library objfiles, added by ADD_SOLIB,  4.  symbol files
  202.    for modules that were loaded when GDB attached to a remote system
  203.    (see remote-vx.c).  */

  204. struct objfile
  205.   {

  206.     /* All struct objfile's are chained together by their next pointers.
  207.        The program space field "objfiles"  (frequently referenced via
  208.        the macro "object_files") points to the first link in this
  209.        chain.  */

  210.     struct objfile *next;

  211.     /* The object file's original name as specified by the user,
  212.        made absolute, and tilde-expanded.  However, it is not canonicalized
  213.        (i.e., it has not been passed through gdb_realpath).
  214.        This pointer is never NULL.  This does not have to be freed; it is
  215.        guaranteed to have a lifetime at least as long as the objfile.  */

  216.     char *original_name;

  217.     CORE_ADDR addr_low;

  218.     /* Some flag bits for this objfile.
  219.        The values are defined by OBJF_*.  */

  220.     unsigned short flags;

  221.     /* The program space associated with this objfile.  */

  222.     struct program_space *pspace;

  223.     /* List of compunits.
  224.        These are used to do symbol lookups and file/line-number lookups.  */

  225.     struct compunit_symtab *compunit_symtabs;

  226.     /* Each objfile points to a linked list of partial symtabs derived from
  227.        this file, one partial symtab structure for each compilation unit
  228.        (source file).  */

  229.     struct partial_symtab *psymtabs;

  230.     /* Map addresses to the entries of PSYMTABS.  It would be more efficient to
  231.        have a map per the whole process but ADDRMAP cannot selectively remove
  232.        its items during FREE_OBJFILE.  This mapping is already present even for
  233.        PARTIAL_SYMTABs which still have no corresponding full SYMTABs read.  */

  234.     struct addrmap *psymtabs_addrmap;

  235.     /* List of freed partial symtabs, available for re-use.  */

  236.     struct partial_symtab *free_psymtabs;

  237.     /* The object file's BFD.  Can be null if the objfile contains only
  238.        minimal symbols, e.g. the run time common symbols for SunOS4.  */

  239.     bfd *obfd;

  240.     /* The per-BFD data.  Note that this is treated specially if OBFD
  241.        is NULL.  */

  242.     struct objfile_per_bfd_storage *per_bfd;

  243.     /* The modification timestamp of the object file, as of the last time
  244.        we read its symbols.  */

  245.     long mtime;

  246.     /* Obstack to hold objects that should be freed when we load a new symbol
  247.        table from this object file.  */

  248.     struct obstack objfile_obstack;

  249.     /* A byte cache where we can stash arbitrary "chunks" of bytes that
  250.        will not change.  */

  251.     struct psymbol_bcache *psymbol_cache; /* Byte cache for partial syms.  */

  252.     /* Vectors of all partial symbols read in from file.  The actual data
  253.        is stored in the objfile_obstack.  */

  254.     struct psymbol_allocation_list global_psymbols;
  255.     struct psymbol_allocation_list static_psymbols;

  256.     /* Structure which keeps track of functions that manipulate objfile's
  257.        of the same type as this objfileI.e. the function to read partial
  258.        symbols for example.  Note that this structure is in statically
  259.        allocated memory, and is shared by all objfiles that use the
  260.        object module reader of this type.  */

  261.     const struct sym_fns *sf;

  262.     /* Per objfile data-pointers required by other GDB modules.  */

  263.     REGISTRY_FIELDS;

  264.     /* Set of relocation offsets to apply to each section.
  265.        The table is indexed by the_bfd_section->index, thus it is generally
  266.        as large as the number of sections in the binary.
  267.        The table is stored on the objfile_obstack.

  268.        These offsets indicate that all symbols (including partial and
  269.        minimal symbols) which have been read have been relocated by this
  270.        much.  Symbols which are yet to be read need to be relocated by it.  */

  271.     struct section_offsets *section_offsets;
  272.     int num_sections;

  273.     /* Indexes in the section_offsets array.  These are initialized by the
  274.        *_symfile_offsets() family of functions (som_symfile_offsets,
  275.        xcoff_symfile_offsets, default_symfile_offsets).  In theory they
  276.        should correspond to the section indexes used by bfd for the
  277.        current objfile.  The exception to this for the time being is the
  278.        SOM version.  */

  279.     int sect_index_text;
  280.     int sect_index_data;
  281.     int sect_index_bss;
  282.     int sect_index_rodata;

  283.     /* These pointers are used to locate the section table, which
  284.        among other things, is used to map pc addresses into sections.
  285.        SECTIONS points to the first entry in the table, and
  286.        SECTIONS_END points to the first location past the last entry
  287.        in the table.  The table is stored on the objfile_obstack.  The
  288.        sections are indexed by the BFD section index; but the
  289.        structure data is only valid for certain sections
  290.        (e.g. non-empty, SEC_ALLOC).  */

  291.     struct obj_section *sections, *sections_end;

  292.     /* GDB allows to have debug symbols in separate object files.  This is
  293.        used by .gnu_debuglink, ELF build id note and Mach-O OSO.
  294.        Although this is a tree structure, GDB only support one level
  295.        (ie a separate debug for a separate debug is not supported).  Note that
  296.        separate debug object are in the main chain and therefore will be
  297.        visited by ALL_OBJFILES & co iterators.  Separate debug objfile always
  298.        has a non-nul separate_debug_objfile_backlink.  */

  299.     /* Link to the first separate debug object, if any.  */
  300.     struct objfile *separate_debug_objfile;

  301.     /* If this is a separate debug object, this is used as a link to the
  302.        actual executable objfile.  */
  303.     struct objfile *separate_debug_objfile_backlink;

  304.     /* If this is a separate debug object, this is a link to the next one
  305.        for the same executable objfile.  */
  306.     struct objfile *separate_debug_objfile_link;

  307.     /* Place to stash various statistics about this objfile.  */
  308.     OBJSTATS;

  309.     /* A linked list of symbols created when reading template types or
  310.        function templates.  These symbols are not stored in any symbol
  311.        table, so we have to keep them here to relocate them
  312.        properly.  */
  313.     struct symbol *template_symbols;
  314.   };

  315. /* Defines for the objfile flag word.  */

  316. /* When an object file has its functions reordered (currently Irix-5.2
  317.    shared libraries exhibit this behaviour), we will need an expensive
  318.    algorithm to locate a partial symtab or symtab via an address.
  319.    To avoid this penalty for normal object files, we use this flag,
  320.    whose setting is determined upon symbol table read in.  */

  321. #define OBJF_REORDERED        (1 << 0)        /* Functions are reordered */

  322. /* Distinguish between an objfile for a shared library and a "vanilla"
  323.    objfile.  This may come from a target's implementation of the solib
  324.    interface, from add-symbol-file, or any other mechanism that loads
  325.    dynamic objects.  */

  326. #define OBJF_SHARED     (1 << 1)        /* From a shared library */

  327. /* User requested that this objfile be read in it's entirety.  */

  328. #define OBJF_READNOW        (1 << 2)        /* Immediate full read */

  329. /* This objfile was created because the user explicitly caused it
  330.    (e.g., used the add-symbol-file command).  This bit offers a way
  331.    for run_command to remove old objfile entries which are no longer
  332.    valid (i.e., are associated with an old inferior), but to preserve
  333.    ones that the user explicitly loaded via the add-symbol-file
  334.    command.  */

  335. #define OBJF_USERLOADED        (1 << 3)        /* User loaded */

  336. /* Set if we have tried to read partial symtabs for this objfile.
  337.    This is used to allow lazy reading of partial symtabs.  */

  338. #define OBJF_PSYMTABS_READ (1 << 4)

  339. /* Set if this is the main symbol file
  340.    (as opposed to symbol file for dynamically loaded code).  */

  341. #define OBJF_MAINLINE (1 << 5)

  342. /* ORIGINAL_NAME and OBFD->FILENAME correspond to text description unrelated to
  343.    filesystem names.  It can be for example "<image in memory>".  */

  344. #define OBJF_NOT_FILENAME (1 << 6)

  345. /* Declarations for functions defined in objfiles.c */

  346. extern struct objfile *allocate_objfile (bfd *, const char *name, int);

  347. extern struct gdbarch *get_objfile_arch (const struct objfile *);

  348. extern int entry_point_address_query (CORE_ADDR *entry_p);

  349. extern CORE_ADDR entry_point_address (void);

  350. extern void build_objfile_section_table (struct objfile *);

  351. extern void terminate_minimal_symbol_table (struct objfile *objfile);

  352. extern struct objfile *objfile_separate_debug_iterate (const struct objfile *,
  353.                                                        const struct objfile *);

  354. extern void put_objfile_before (struct objfile *, struct objfile *);

  355. extern void add_separate_debug_objfile (struct objfile *, struct objfile *);

  356. extern void unlink_objfile (struct objfile *);

  357. extern void free_objfile (struct objfile *);

  358. extern void free_objfile_separate_debug (struct objfile *);

  359. extern struct cleanup *make_cleanup_free_objfile (struct objfile *);

  360. extern void free_all_objfiles (void);

  361. extern void objfile_relocate (struct objfile *, const struct section_offsets *);
  362. extern void objfile_rebase (struct objfile *, CORE_ADDR);

  363. extern int objfile_has_partial_symbols (struct objfile *objfile);

  364. extern int objfile_has_full_symbols (struct objfile *objfile);

  365. extern int objfile_has_symbols (struct objfile *objfile);

  366. extern int have_partial_symbols (void);

  367. extern int have_full_symbols (void);

  368. extern void objfile_set_sym_fns (struct objfile *objfile,
  369.                                  const struct sym_fns *sf);

  370. extern void objfiles_changed (void);

  371. extern int is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);

  372. /* Return true if ADDRESS maps into one of the sections of a
  373.    OBJF_SHARED objfile of PSPACE and false otherwise.  */

  374. extern int shared_objfile_contains_address_p (struct program_space *pspace,
  375.                                               CORE_ADDR address);

  376. /* This operation deletes all objfile entries that represent solibs that
  377.    weren't explicitly loaded by the user, via e.g., the add-symbol-file
  378.    command.  */

  379. extern void objfile_purge_solibs (void);

  380. /* Functions for dealing with the minimal symbol table, really a misc
  381.    address<->symbol mapping for things we don't have debug symbols for.  */

  382. extern int have_minimal_symbols (void);

  383. extern struct obj_section *find_pc_section (CORE_ADDR pc);

  384. /* Return non-zero if PC is in a section called NAME.  */
  385. extern int pc_in_section (CORE_ADDR, char *);

  386. /* Return non-zero if PC is in a SVR4-style procedure linkage table
  387.    section.  */

  388. static inline int
  389. in_plt_section (CORE_ADDR pc)
  390. {
  391.   return pc_in_section (pc, ".plt");
  392. }

  393. /* Keep a registry of per-objfile data-pointers required by other GDB
  394.    modules.  */
  395. DECLARE_REGISTRY(objfile);

  396. /* In normal use, the section map will be rebuilt by find_pc_section
  397.    if objfiles have been added, removed or relocated since it was last
  398.    called.  Calling inhibit_section_map_updates will inhibit this
  399.    behavior until resume_section_map_updates is called.  If you call
  400.    inhibit_section_map_updates you must ensure that every call to
  401.    find_pc_section in the inhibited region relates to a section that
  402.    is already in the section map and has not since been removed or
  403.    relocated.  */
  404. extern void inhibit_section_map_updates (struct program_space *pspace);

  405. /* Resume automatically rebuilding the section map as required.  */
  406. extern void resume_section_map_updates (struct program_space *pspace);

  407. /* Version of the above suitable for use as a cleanup.  */
  408. extern void resume_section_map_updates_cleanup (void *arg);

  409. extern void default_iterate_over_objfiles_in_search_order
  410.   (struct gdbarch *gdbarch,
  411.    iterate_over_objfiles_in_search_order_cb_ftype *cb,
  412.    void *cb_data, struct objfile *current_objfile);


  413. /* Traverse all object files in the current program space.
  414.    ALL_OBJFILES_SAFE works even if you delete the objfile during the
  415.    traversal.  */

  416. /* Traverse all object files in program space SS.  */

  417. #define ALL_PSPACE_OBJFILES(ss, obj)                                        \
  418.   for ((obj) = ss->objfiles; (obj) != NULL; (obj) = (obj)->next)

  419. #define ALL_OBJFILES(obj)                            \
  420.   for ((obj) = current_program_space->objfiles; \
  421.        (obj) != NULL;                                    \
  422.        (obj) = (obj)->next)

  423. #define ALL_OBJFILES_SAFE(obj,nxt)                        \
  424.   for ((obj) = current_program_space->objfiles;        \
  425.        (obj) != NULL? ((nxt)=(obj)->next,1) :0;        \
  426.        (obj) = (nxt))

  427. /* Traverse all symtabs in one objfile.  */

  428. #define ALL_OBJFILE_FILETABS(objfile, cu, s) \
  429.   ALL_OBJFILE_COMPUNITS (objfile, cu) \
  430.     ALL_COMPUNIT_FILETABS (cu, s)

  431. /* Traverse all compunits in one objfile.  */

  432. #define ALL_OBJFILE_COMPUNITS(objfile, cu) \
  433.   for ((cu) = (objfile) -> compunit_symtabs; (cu) != NULL; (cu) = (cu) -> next)

  434. /* Traverse all minimal symbols in one objfile.  */

  435. #define        ALL_OBJFILE_MSYMBOLS(objfile, m)        \
  436.     for ((m) = (objfile)->per_bfd->msymbols;        \
  437.          MSYMBOL_LINKAGE_NAME (m) != NULL;        \
  438.          (m)++)

  439. /* Traverse all symtabs in all objfiles in the current symbol
  440.    space.  */

  441. #define ALL_FILETABS(objfile, ps, s)                \
  442.   ALL_OBJFILES (objfile)                        \
  443.     ALL_OBJFILE_FILETABS (objfile, ps, s)

  444. /* Traverse all compunits in all objfiles in the current program space.  */

  445. #define ALL_COMPUNITS(objfile, cu)        \
  446.   ALL_OBJFILES (objfile)                \
  447.     ALL_OBJFILE_COMPUNITS (objfile, cu)

  448. /* Traverse all minimal symbols in all objfiles in the current symbol
  449.    space.  */

  450. #define        ALL_MSYMBOLS(objfile, m) \
  451.   ALL_OBJFILES (objfile)         \
  452.     ALL_OBJFILE_MSYMBOLS (objfile, m)

  453. #define ALL_OBJFILE_OSECTIONS(objfile, osect)        \
  454.   for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
  455.     if (osect->the_bfd_section == NULL)                                        \
  456.       {                                                                        \
  457.         /* Nothing.  */                                                        \
  458.       }                                                                        \
  459.     else

  460. /* Traverse all obj_sections in all objfiles in the current program
  461.    space.

  462.    Note that this detects a "break" in the inner loop, and exits
  463.    immediately from the outer loop as well, thus, client code doesn't
  464.    need to know that this is implemented with a double for.  The extra
  465.    hair is to make sure that a "break;" stops the outer loop iterating
  466.    as well, and both OBJFILE and OSECT are left unmodified:

  467.     - The outer loop learns about the inner loop's end condition, and
  468.       stops iterating if it detects the inner loop didn't reach its
  469.       end.  In other words, the outer loop keeps going only if the
  470.       inner loop reached its end cleanly [(osect) ==
  471.       (objfile)->sections_end].

  472.     - OSECT is initialized in the outer loop initialization
  473.       expressions, such as if the inner loop has reached its end, so
  474.       the check mentioned above succeeds the first time.

  475.     - The trick to not clearing OBJFILE on a "break;" is, in the outer
  476.       loop's loop expression, advance OBJFILE, but iff the inner loop
  477.       reached its end.  If not, there was a "break;", so leave OBJFILE
  478.       as is; the outer loop's conditional will break immediately as
  479.       well (as OSECT will be different from OBJFILE->sections_end).  */

  480. #define ALL_OBJSECTIONS(objfile, osect)                                        \
  481.   for ((objfile) = current_program_space->objfiles,                        \
  482.          (objfile) != NULL ? ((osect) = (objfile)->sections_end) : 0;        \
  483.        (objfile) != NULL                                                \
  484.          && (osect) == (objfile)->sections_end;                                \
  485.        ((osect) == (objfile)->sections_end                                \
  486.         ? ((objfile) = (objfile)->next,                                        \
  487.            (objfile) != NULL ? (osect) = (objfile)->sections_end : 0)        \
  488.         : 0))                                                                \
  489.     ALL_OBJFILE_OSECTIONS (objfile, osect)

  490. #define SECT_OFF_DATA(objfile) \
  491.      ((objfile->sect_index_data == -1) \
  492.       ? (internal_error (__FILE__, __LINE__, \
  493.                          _("sect_index_data not initialized")), -1)        \
  494.       : objfile->sect_index_data)

  495. #define SECT_OFF_RODATA(objfile) \
  496.      ((objfile->sect_index_rodata == -1) \
  497.       ? (internal_error (__FILE__, __LINE__, \
  498.                          _("sect_index_rodata not initialized")), -1)        \
  499.       : objfile->sect_index_rodata)

  500. #define SECT_OFF_TEXT(objfile) \
  501.      ((objfile->sect_index_text == -1) \
  502.       ? (internal_error (__FILE__, __LINE__, \
  503.                          _("sect_index_text not initialized")), -1)        \
  504.       : objfile->sect_index_text)

  505. /* Sometimes the .bss section is missing from the objfile, so we don't
  506.    want to die here.  Let the users of SECT_OFF_BSS deal with an
  507.    uninitialized section index.  */
  508. #define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss

  509. /* Answer whether there is more than one object file loaded.  */

  510. #define MULTI_OBJFILE_P() (object_files && object_files->next)

  511. /* Reset the per-BFD storage area on OBJ.  */

  512. void set_objfile_per_bfd (struct objfile *obj);

  513. const char *objfile_name (const struct objfile *objfile);

  514. /* Return the name to print for OBJFILE in debugging messages.  */

  515. extern const char *objfile_debug_name (const struct objfile *objfile);

  516. /* Set the objfile's notion of the "main" name and language.  */

  517. extern void set_objfile_main_name (struct objfile *objfile,
  518.                                    const char *name, enum language lang);

  519. #endif /* !defined (OBJFILES_H) */