- /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
- Copyright (C) 1990-2015 Free Software Foundation, Inc.
- This file is part of GDB.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
- #include "defs.h"
- #include "elf/external.h"
- #include "elf/common.h"
- #include "elf/mips.h"
- #include "symtab.h"
- #include "bfd.h"
- #include "symfile.h"
- #include "objfiles.h"
- #include "gdbcore.h"
- #include "target.h"
- #include "inferior.h"
- #include "infrun.h"
- #include "regcache.h"
- #include "gdbthread.h"
- #include "observer.h"
- #include "solist.h"
- #include "solib.h"
- #include "solib-svr4.h"
- #include "bfd-target.h"
- #include "elf-bfd.h"
- #include "exec.h"
- #include "auxv.h"
- #include "gdb_bfd.h"
- #include "probe.h"
- static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
- static int svr4_have_link_map_offsets (void);
- static void svr4_relocate_main_executable (void);
- static void svr4_free_library_list (void *p_list);
- /* Link map info to include in an allocated so_list entry. */
- struct lm_info
- {
- /* Amount by which addresses in the binary should be relocated to
- match the inferior. The direct inferior value is L_ADDR_INFERIOR.
- When prelinking is involved and the prelink base address changes,
- we may need a different offset - the recomputed offset is in L_ADDR.
- It is commonly the same value. It is cached as we want to warn about
- the difference and compute it only once. L_ADDR is valid
- iff L_ADDR_P. */
- CORE_ADDR l_addr, l_addr_inferior;
- unsigned int l_addr_p : 1;
- /* The target location of lm. */
- CORE_ADDR lm_addr;
- /* Values read in from inferior's fields of the same name. */
- CORE_ADDR l_ld, l_next, l_prev, l_name;
- };
- /* On SVR4 systems, a list of symbols in the dynamic linker where
- GDB can try to place a breakpoint to monitor shared library
- events.
- If none of these symbols are found, or other errors occur, then
- SVR4 systems will fall back to using a symbol as the "startup
- mapping complete" breakpoint address. */
- static const char * const solib_break_names[] =
- {
- "r_debug_state",
- "_r_debug_state",
- "_dl_debug_state",
- "rtld_db_dlactivity",
- "__dl_rtld_db_dlactivity",
- "_rtld_debug_state",
- NULL
- };
- static const char * const bkpt_names[] =
- {
- "_start",
- "__start",
- "main",
- NULL
- };
- static const char * const main_name_list[] =
- {
- "main_$main",
- NULL
- };
- /* What to do when a probe stop occurs. */
- enum probe_action
- {
- /* Something went seriously wrong. Stop using probes and
- revert to using the older interface. */
- PROBES_INTERFACE_FAILED,
- /* No action is required. The shared object list is still
- valid. */
- DO_NOTHING,
- /* The shared object list should be reloaded entirely. */
- FULL_RELOAD,
- /* Attempt to incrementally update the shared object list. If
- the update fails or is not possible, fall back to reloading
- the list in full. */
- UPDATE_OR_RELOAD,
- };
- /* A probe's name and its associated action. */
- struct probe_info
- {
- /* The name of the probe. */
- const char *name;
- /* What to do when a probe stop occurs. */
- enum probe_action action;
- };
- /* A list of named probes and their associated actions. If all
- probes are present in the dynamic linker then the probes-based
- interface will be used. */
- static const struct probe_info probe_info[] =
- {
- { "init_start", DO_NOTHING },
- { "init_complete", FULL_RELOAD },
- { "map_start", DO_NOTHING },
- { "map_failed", DO_NOTHING },
- { "reloc_complete", UPDATE_OR_RELOAD },
- { "unmap_start", DO_NOTHING },
- { "unmap_complete", FULL_RELOAD },
- };
- #define NUM_PROBES ARRAY_SIZE (probe_info)
- /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
- the same shared library. */
- static int
- svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
- {
- if (strcmp (gdb_so_name, inferior_so_name) == 0)
- return 1;
- /* On Solaris, when starting inferior we think that dynamic linker is
- /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
- contains /lib/ld.so.1. Sometimes one file is a link to another, but
- sometimes they have identical content, but are not linked to each
- other. We don't restrict this check for Solaris, but the chances
- of running into this situation elsewhere are very low. */
- if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
- && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
- return 1;
- /* Similarly, we observed the same issue with sparc64, but with
- different locations. */
- if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
- && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
- return 1;
- return 0;
- }
- static int
- svr4_same (struct so_list *gdb, struct so_list *inferior)
- {
- return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
- }
- static struct lm_info *
- lm_info_read (CORE_ADDR lm_addr)
- {
- struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
- gdb_byte *lm;
- struct lm_info *lm_info;
- struct cleanup *back_to;
- lm = xmalloc (lmo->link_map_size);
- back_to = make_cleanup (xfree, lm);
- if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
- {
- warning (_("Error reading shared library list entry at %s"),
- paddress (target_gdbarch (), lm_addr)),
- lm_info = NULL;
- }
- else
- {
- struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
- lm_info = xzalloc (sizeof (*lm_info));
- lm_info->lm_addr = lm_addr;
- lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
- ptr_type);
- lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
- lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
- ptr_type);
- lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
- ptr_type);
- lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
- ptr_type);
- }
- do_cleanups (back_to);
- return lm_info;
- }
- static int
- has_lm_dynamic_from_link_map (void)
- {
- struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
- return lmo->l_ld_offset >= 0;
- }
- static CORE_ADDR
- lm_addr_check (const struct so_list *so, bfd *abfd)
- {
- if (!so->lm_info->l_addr_p)
- {
- struct bfd_section *dyninfo_sect;
- CORE_ADDR l_addr, l_dynaddr, dynaddr;
- l_addr = so->lm_info->l_addr_inferior;
- if (! abfd || ! has_lm_dynamic_from_link_map ())
- goto set_addr;
- l_dynaddr = so->lm_info->l_ld;
- dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
- if (dyninfo_sect == NULL)
- goto set_addr;
- dynaddr = bfd_section_vma (abfd, dyninfo_sect);
- if (dynaddr + l_addr != l_dynaddr)
- {
- CORE_ADDR align = 0x1000;
- CORE_ADDR minpagesize = align;
- if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
- {
- Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
- Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
- int i;
- align = 1;
- for (i = 0; i < ehdr->e_phnum; i++)
- if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
- align = phdr[i].p_align;
- minpagesize = get_elf_backend_data (abfd)->minpagesize;
- }
- /* Turn it into a mask. */
- align--;
- /* If the changes match the alignment requirements, we
- assume we're using a core file that was generated by the
- same binary, just prelinked with a different base offset.
- If it doesn't match, we may have a different binary, the
- same binary with the dynamic table loaded at an unrelated
- location, or anything, really. To avoid regressions,
- don't adjust the base offset in the latter case, although
- odds are that, if things really changed, debugging won't
- quite work.
- One could expect more the condition
- ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
- but the one below is relaxed for PPC. The PPC kernel supports
- either 4k or 64k page sizes. To be prepared for 64k pages,
- PPC ELF files are built using an alignment requirement of 64k.
- However, when running on a kernel supporting 4k pages, the memory
- mapping of the library may not actually happen on a 64k boundary!
- (In the usual case where (l_addr & align) == 0, this check is
- equivalent to the possibly expected check above.)
- Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
- l_addr = l_dynaddr - dynaddr;
- if ((l_addr & (minpagesize - 1)) == 0
- && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
- {
- if (info_verbose)
- printf_unfiltered (_("Using PIC (Position Independent Code) "
- "prelink displacement %s for \"%s\".\n"),
- paddress (target_gdbarch (), l_addr),
- so->so_name);
- }
- else
- {
- /* There is no way to verify the library file matches. prelink
- can during prelinking of an unprelinked file (or unprelinking
- of a prelinked file) shift the DYNAMIC segment by arbitrary
- offset without any page size alignment. There is no way to
- find out the ELF header and/or Program Headers for a limited
- verification if it they match. One could do a verification
- of the DYNAMIC segment. Still the found address is the best
- one GDB could find. */
- warning (_(".dynamic section for \"%s\" "
- "is not at the expected address "
- "(wrong library or version mismatch?)"), so->so_name);
- }
- }
- set_addr:
- so->lm_info->l_addr = l_addr;
- so->lm_info->l_addr_p = 1;
- }
- return so->lm_info->l_addr;
- }
- /* Per pspace SVR4 specific data. */
- struct svr4_info
- {
- CORE_ADDR debug_base; /* Base of dynamic linker structures. */
- /* Validity flag for debug_loader_offset. */
- int debug_loader_offset_p;
- /* Load address for the dynamic linker, inferred. */
- CORE_ADDR debug_loader_offset;
- /* Name of the dynamic linker, valid if debug_loader_offset_p. */
- char *debug_loader_name;
- /* Load map address for the main executable. */
- CORE_ADDR main_lm_addr;
- CORE_ADDR interp_text_sect_low;
- CORE_ADDR interp_text_sect_high;
- CORE_ADDR interp_plt_sect_low;
- CORE_ADDR interp_plt_sect_high;
- /* Nonzero if the list of objects was last obtained from the target
- via qXfer:libraries-svr4:read. */
- int using_xfer;
- /* Table of struct probe_and_action instances, used by the
- probes-based interface to map breakpoint addresses to probes
- and their associated actions. Lookup is performed using
- probe_and_action->probe->address. */
- htab_t probes_table;
- /* List of objects loaded into the inferior, used by the probes-
- based interface. */
- struct so_list *solib_list;
- };
- /* Per-program-space data key. */
- static const struct program_space_data *solib_svr4_pspace_data;
- /* Free the probes table. */
- static void
- free_probes_table (struct svr4_info *info)
- {
- if (info->probes_table == NULL)
- return;
- htab_delete (info->probes_table);
- info->probes_table = NULL;
- }
- /* Free the solib list. */
- static void
- free_solib_list (struct svr4_info *info)
- {
- svr4_free_library_list (&info->solib_list);
- info->solib_list = NULL;
- }
- static void
- svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
- {
- struct svr4_info *info = arg;
- free_probes_table (info);
- free_solib_list (info);
- xfree (info);
- }
- /* Get the current svr4 data. If none is found yet, add it now. This
- function always returns a valid object. */
- static struct svr4_info *
- get_svr4_info (void)
- {
- struct svr4_info *info;
- info = program_space_data (current_program_space, solib_svr4_pspace_data);
- if (info != NULL)
- return info;
- info = XCNEW (struct svr4_info);
- set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
- return info;
- }
- /* Local function prototypes */
- static int match_main (const char *);
- /* Read program header TYPE from inferior memory. The header is found
- by scanning the OS auxillary vector.
- If TYPE == -1, return the program headers instead of the contents of
- one program header.
- Return a pointer to allocated memory holding the program header contents,
- or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
- size of those contents is returned to P_SECT_SIZE. Likewise, the target
- architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
- static gdb_byte *
- read_program_header (int type, int *p_sect_size, int *p_arch_size)
- {
- enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
- CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
- int arch_size, sect_size;
- CORE_ADDR sect_addr;
- gdb_byte *buf;
- int pt_phdr_p = 0;
- /* Get required auxv elements from target. */
- if (target_auxv_search (¤t_target, AT_PHDR, &at_phdr) <= 0)
- return 0;
- if (target_auxv_search (¤t_target, AT_PHENT, &at_phent) <= 0)
- return 0;
- if (target_auxv_search (¤t_target, AT_PHNUM, &at_phnum) <= 0)
- return 0;
- if (!at_phdr || !at_phnum)
- return 0;
- /* Determine ELF architecture type. */
- if (at_phent == sizeof (Elf32_External_Phdr))
- arch_size = 32;
- else if (at_phent == sizeof (Elf64_External_Phdr))
- arch_size = 64;
- else
- return 0;
- /* Find the requested segment. */
- if (type == -1)
- {
- sect_addr = at_phdr;
- sect_size = at_phent * at_phnum;
- }
- else if (arch_size == 32)
- {
- Elf32_External_Phdr phdr;
- int i;
- /* Search for requested PHDR. */
- for (i = 0; i < at_phnum; i++)
- {
- int p_type;
- if (target_read_memory (at_phdr + i * sizeof (phdr),
- (gdb_byte *)&phdr, sizeof (phdr)))
- return 0;
- p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
- 4, byte_order);
- if (p_type == PT_PHDR)
- {
- pt_phdr_p = 1;
- pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
- 4, byte_order);
- }
- if (p_type == type)
- break;
- }
- if (i == at_phnum)
- return 0;
- /* Retrieve address and size. */
- sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
- 4, byte_order);
- sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
- 4, byte_order);
- }
- else
- {
- Elf64_External_Phdr phdr;
- int i;
- /* Search for requested PHDR. */
- for (i = 0; i < at_phnum; i++)
- {
- int p_type;
- if (target_read_memory (at_phdr + i * sizeof (phdr),
- (gdb_byte *)&phdr, sizeof (phdr)))
- return 0;
- p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
- 4, byte_order);
- if (p_type == PT_PHDR)
- {
- pt_phdr_p = 1;
- pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
- 8, byte_order);
- }
- if (p_type == type)
- break;
- }
- if (i == at_phnum)
- return 0;
- /* Retrieve address and size. */
- sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
- 8, byte_order);
- sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
- 8, byte_order);
- }
- /* PT_PHDR is optional, but we really need it
- for PIE to make this work in general. */
- if (pt_phdr_p)
- {
- /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
- Relocation offset is the difference between the two. */
- sect_addr = sect_addr + (at_phdr - pt_phdr);
- }
- /* Read in requested program header. */
- buf = xmalloc (sect_size);
- if (target_read_memory (sect_addr, buf, sect_size))
- {
- xfree (buf);
- return NULL;
- }
- if (p_arch_size)
- *p_arch_size = arch_size;
- if (p_sect_size)
- *p_sect_size = sect_size;
- return buf;
- }
- /* Return program interpreter string. */
- static char *
- find_program_interpreter (void)
- {
- gdb_byte *buf = NULL;
- /* If we have an exec_bfd, use its section table. */
- if (exec_bfd
- && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
- {
- struct bfd_section *interp_sect;
- interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
- if (interp_sect != NULL)
- {
- int sect_size = bfd_section_size (exec_bfd, interp_sect);
- buf = xmalloc (sect_size);
- bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
- }
- }
- /* If we didn't find it, use the target auxillary vector. */
- if (!buf)
- buf = read_program_header (PT_INTERP, NULL, NULL);
- return (char *) buf;
- }
- /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
- found, 1 is returned and the corresponding PTR is set. */
- static int
- scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr)
- {
- int arch_size, step, sect_size;
- long current_dyntag;
- CORE_ADDR dyn_ptr, dyn_addr;
- gdb_byte *bufend, *bufstart, *buf;
- Elf32_External_Dyn *x_dynp_32;
- Elf64_External_Dyn *x_dynp_64;
- struct bfd_section *sect;
- struct target_section *target_section;
- if (abfd == NULL)
- return 0;
- if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
- return 0;
- arch_size = bfd_get_arch_size (abfd);
- if (arch_size == -1)
- return 0;
- /* Find the start address of the .dynamic section. */
- sect = bfd_get_section_by_name (abfd, ".dynamic");
- if (sect == NULL)
- return 0;
- for (target_section = current_target_sections->sections;
- target_section < current_target_sections->sections_end;
- target_section++)
- if (sect == target_section->the_bfd_section)
- break;
- if (target_section < current_target_sections->sections_end)
- dyn_addr = target_section->addr;
- else
- {
- /* ABFD may come from OBJFILE acting only as a symbol file without being
- loaded into the target (see add_symbol_file_command). This case is
- such fallback to the file VMA address without the possibility of
- having the section relocated to its actual in-memory address. */
- dyn_addr = bfd_section_vma (abfd, sect);
- }
- /* Read in .dynamic from the BFD. We will get the actual value
- from memory later. */
- sect_size = bfd_section_size (abfd, sect);
- buf = bufstart = alloca (sect_size);
- if (!bfd_get_section_contents (abfd, sect,
- buf, 0, sect_size))
- return 0;
- /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
- step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
- : sizeof (Elf64_External_Dyn);
- for (bufend = buf + sect_size;
- buf < bufend;
- buf += step)
- {
- if (arch_size == 32)
- {
- x_dynp_32 = (Elf32_External_Dyn *) buf;
- current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
- dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
- }
- else
- {
- x_dynp_64 = (Elf64_External_Dyn *) buf;
- current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
- dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
- }
- if (current_dyntag == DT_NULL)
- return 0;
- if (current_dyntag == desired_dyntag)
- {
- /* If requested, try to read the runtime value of this .dynamic
- entry. */
- if (ptr)
- {
- struct type *ptr_type;
- gdb_byte ptr_buf[8];
- CORE_ADDR ptr_addr;
- ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
- ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
- if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
- dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
- *ptr = dyn_ptr;
- }
- return 1;
- }
- }
- return 0;
- }
- /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
- found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
- is returned and the corresponding PTR is set. */
- static int
- scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr)
- {
- enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
- int sect_size, arch_size, step;
- long current_dyntag;
- CORE_ADDR dyn_ptr;
- gdb_byte *bufend, *bufstart, *buf;
- /* Read in .dynamic section. */
- buf = bufstart = read_program_header (PT_DYNAMIC, §_size, &arch_size);
- if (!buf)
- return 0;
- /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
- step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
- : sizeof (Elf64_External_Dyn);
- for (bufend = buf + sect_size;
- buf < bufend;
- buf += step)
- {
- if (arch_size == 32)
- {
- Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
- current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
- 4, byte_order);
- dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
- 4, byte_order);
- }
- else
- {
- Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
- current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
- 8, byte_order);
- dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
- 8, byte_order);
- }
- if (current_dyntag == DT_NULL)
- break;
- if (current_dyntag == desired_dyntag)
- {
- if (ptr)
- *ptr = dyn_ptr;
- xfree (bufstart);
- return 1;
- }
- }
- xfree (bufstart);
- return 0;
- }
- /* Locate the base address of dynamic linker structs for SVR4 elf
- targets.
- For SVR4 elf targets the address of the dynamic linker's runtime
- structure is contained within the dynamic info section in the
- executable file. The dynamic section is also mapped into the
- inferior address space. Because the runtime loader fills in the
- real address before starting the inferior, we have to read in the
- dynamic info section from the inferior address space.
- If there are any errors while trying to find the address, we
- silently return 0, otherwise the found address is returned. */
- static CORE_ADDR
- elf_locate_base (void)
- {
- struct bound_minimal_symbol msymbol;
- CORE_ADDR dyn_ptr;
- /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
- instead of DT_DEBUG, although they sometimes contain an unused
- DT_DEBUG. */
- if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
- || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
- {
- struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
- gdb_byte *pbuf;
- int pbuf_size = TYPE_LENGTH (ptr_type);
- pbuf = alloca (pbuf_size);
- /* DT_MIPS_RLD_MAP contains a pointer to the address
- of the dynamic link structure. */
- if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
- return 0;
- return extract_typed_address (pbuf, ptr_type);
- }
- /* Find DT_DEBUG. */
- if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
- || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
- return dyn_ptr;
- /* This may be a static executable. Look for the symbol
- conventionally named _r_debug, as a last resort. */
- msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
- if (msymbol.minsym != NULL)
- return BMSYMBOL_VALUE_ADDRESS (msymbol);
- /* DT_DEBUG entry not found. */
- return 0;
- }
- /* Locate the base address of dynamic linker structs.
- For both the SunOS and SVR4 shared library implementations, if the
- inferior executable has been linked dynamically, there is a single
- address somewhere in the inferior's data space which is the key to
- locating all of the dynamic linker's runtime structures. This
- address is the value of the debug base symbol. The job of this
- function is to find and return that address, or to return 0 if there
- is no such address (the executable is statically linked for example).
- For SunOS, the job is almost trivial, since the dynamic linker and
- all of it's structures are statically linked to the executable at
- link time. Thus the symbol for the address we are looking for has
- already been added to the minimal symbol table for the executable's
- objfile at the time the symbol file's symbols were read, and all we
- have to do is look it up there. Note that we explicitly do NOT want
- to find the copies in the shared library.
- The SVR4 version is a bit more complicated because the address
- is contained somewhere in the dynamic info section. We have to go
- to a lot more work to discover the address of the debug base symbol.
- Because of this complexity, we cache the value we find and return that
- value on subsequent invocations. Note there is no copy in the
- executable symbol tables. */
- static CORE_ADDR
- locate_base (struct svr4_info *info)
- {
- /* Check to see if we have a currently valid address, and if so, avoid
- doing all this work again and just return the cached address. If
- we have no cached address, try to locate it in the dynamic info
- section for ELF executables. There's no point in doing any of this
- though if we don't have some link map offsets to work with. */
- if (info->debug_base == 0 && svr4_have_link_map_offsets ())
- info->debug_base = elf_locate_base ();
- return info->debug_base;
- }
- /* Find the first element in the inferior's dynamic link map, and
- return its address in the inferior. Return zero if the address
- could not be determined.
- FIXME: Perhaps we should validate the info somehow, perhaps by
- checking r_version for a known version number, or r_state for
- RT_CONSISTENT. */
- static CORE_ADDR
- solib_svr4_r_map (struct svr4_info *info)
- {
- struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
- struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
- CORE_ADDR addr = 0;
- volatile struct gdb_exception ex;
- TRY_CATCH (ex, RETURN_MASK_ERROR)
- {
- addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
- ptr_type);
- }
- exception_print (gdb_stderr, ex);
- return addr;
- }
- /* Find r_brk from the inferior's debug base. */
- static CORE_ADDR
- solib_svr4_r_brk (struct svr4_info *info)
- {
- struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
- struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
- return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
- ptr_type);
- }
- /* Find the link map for the dynamic linker (if it is not in the
- normal list of loaded shared objects). */
- static CORE_ADDR
- solib_svr4_r_ldsomap (struct svr4_info *info)
- {
- struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
- struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
- enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
- ULONGEST version;
- /* Check version, and return zero if `struct r_debug' doesn't have
- the r_ldsomap member. */
- version
- = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
- lmo->r_version_size, byte_order);
- if (version < 2 || lmo->r_ldsomap_offset == -1)
- return 0;
- return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
- ptr_type);
- }
- /* On Solaris systems with some versions of the dynamic linker,
- ld.so's l_name pointer points to the SONAME in the string table
- rather than into writable memory. So that GDB can find shared
- libraries when loading a core file generated by gcore, ensure that
- memory areas containing the l_name string are saved in the core
- file. */
- static int
- svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
- {
- struct svr4_info *info;
- CORE_ADDR ldsomap;
- struct so_list *new;
- struct cleanup *old_chain;
- CORE_ADDR name_lm;
- info = get_svr4_info ();
- info->debug_base = 0;
- locate_base (info);
- if (!info->debug_base)
- return 0;
- ldsomap = solib_svr4_r_ldsomap (info);
- if (!ldsomap)
- return 0;
- new = XCNEW (struct so_list);
- old_chain = make_cleanup (xfree, new);
- new->lm_info = lm_info_read (ldsomap);
- make_cleanup (xfree, new->lm_info);
- name_lm = new->lm_info ? new->lm_info->l_name : 0;
- do_cleanups (old_chain);
- return (name_lm >= vaddr && name_lm < vaddr + size);
- }
- /* Implement the "open_symbol_file_object" target_so_ops method.
- If no open symbol file, attempt to locate and open the main symbol
- file. On SVR4 systems, this is the first link map entry. If its
- name is here, we can open it. Useful when attaching to a process
- without first loading its symbol file. */
- static int
- open_symbol_file_object (void *from_ttyp)
- {
- CORE_ADDR lm, l_name;
- char *filename;
- int errcode;
- int from_tty = *(int *)from_ttyp;
- struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
- struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
- int l_name_size = TYPE_LENGTH (ptr_type);
- gdb_byte *l_name_buf = xmalloc (l_name_size);
- struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
- struct svr4_info *info = get_svr4_info ();
- if (symfile_objfile)
- if (!query (_("Attempt to reload symbols from process? ")))
- {
- do_cleanups (cleanups);
- return 0;
- }
- /* Always locate the debug struct, in case it has moved. */
- info->debug_base = 0;
- if (locate_base (info) == 0)
- {
- do_cleanups (cleanups);
- return 0; /* failed somehow... */
- }
- /* First link map member should be the executable. */
- lm = solib_svr4_r_map (info);
- if (lm == 0)
- {
- do_cleanups (cleanups);
- return 0; /* failed somehow... */
- }
- /* Read address of name from target memory to GDB. */
- read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
- /* Convert the address to host format. */
- l_name = extract_typed_address (l_name_buf, ptr_type);
- if (l_name == 0)
- {
- do_cleanups (cleanups);
- return 0; /* No filename. */
- }
- /* Now fetch the filename from target memory. */
- target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
- make_cleanup (xfree, filename);
- if (errcode)
- {
- warning (_("failed to read exec filename from attached file: %s"),
- safe_strerror (errcode));
- do_cleanups (cleanups);
- return 0;
- }
- /* Have a pathname: read the symbol file. */
- symbol_file_add_main (filename, from_tty);
- do_cleanups (cleanups);
- return 1;
- }
- /* Data exchange structure for the XML parser as returned by
- svr4_current_sos_via_xfer_libraries. */
- struct svr4_library_list
- {
- struct so_list *head, **tailp;
- /* Inferior address of struct link_map used for the main executable. It is
- NULL if not known. */
- CORE_ADDR main_lm;
- };
- /* Implementation for target_so_ops.free_so. */
- static void
- svr4_free_so (struct so_list *so)
- {
- xfree (so->lm_info);
- }
- /* Implement target_so_ops.clear_so. */
- static void
- svr4_clear_so (struct so_list *so)
- {
- if (so->lm_info != NULL)
- so->lm_info->l_addr_p = 0;
- }
- /* Free so_list built so far (called via cleanup). */
- static void
- svr4_free_library_list (void *p_list)
- {
- struct so_list *list = *(struct so_list **) p_list;
- while (list != NULL)
- {
- struct so_list *next = list->next;
- free_so (list);
- list = next;
- }
- }
- /* Copy library list. */
- static struct so_list *
- svr4_copy_library_list (struct so_list *src)
- {
- struct so_list *dst = NULL;
- struct so_list **link = &dst;
- while (src != NULL)
- {
- struct so_list *new;
- new = xmalloc (sizeof (struct so_list));
- memcpy (new, src, sizeof (struct so_list));
- new->lm_info = xmalloc (sizeof (struct lm_info));
- memcpy (new->lm_info, src->lm_info, sizeof (struct lm_info));
- new->next = NULL;
- *link = new;
- link = &new->next;
- src = src->next;
- }
- return dst;
- }
- #ifdef HAVE_LIBEXPAT
- #include "xml-support.h"
- /* Handle the start of a <library> element. Note: new elements are added
- at the tail of the list, keeping the list in order. */
- static void
- library_list_start_library (struct gdb_xml_parser *parser,
- const struct gdb_xml_element *element,
- void *user_data, VEC(gdb_xml_value_s) *attributes)
- {
- struct svr4_library_list *list = user_data;
- const char *name = xml_find_attribute (attributes, "name")->value;
- ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
- ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
- ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
- struct so_list *new_elem;
- new_elem = XCNEW (struct so_list);
- new_elem->lm_info = XCNEW (struct lm_info);
- new_elem->lm_info->lm_addr = *lmp;
- new_elem->lm_info->l_addr_inferior = *l_addrp;
- new_elem->lm_info->l_ld = *l_ldp;
- strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
- new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
- strcpy (new_elem->so_original_name, new_elem->so_name);
- *list->tailp = new_elem;
- list->tailp = &new_elem->next;
- }
- /* Handle the start of a <library-list-svr4> element. */
- static void
- svr4_library_list_start_list (struct gdb_xml_parser *parser,
- const struct gdb_xml_element *element,
- void *user_data, VEC(gdb_xml_value_s) *attributes)
- {
- struct svr4_library_list *list = user_data;
- const char *version = xml_find_attribute (attributes, "version")->value;
- struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
- if (strcmp (version, "1.0") != 0)
- gdb_xml_error (parser,
- _("SVR4 Library list has unsupported version \"%s\""),
- version);
- if (main_lm)
- list->main_lm = *(ULONGEST *) main_lm->value;
- }
- /* The allowed elements and attributes for an XML library list.
- The root element is a <library-list>. */
- static const struct gdb_xml_attribute svr4_library_attributes[] =
- {
- { "name", GDB_XML_AF_NONE, NULL, NULL },
- { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
- { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
- { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
- { NULL, GDB_XML_AF_NONE, NULL, NULL }
- };
- static const struct gdb_xml_element svr4_library_list_children[] =
- {
- {
- "library", svr4_library_attributes, NULL,
- GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
- library_list_start_library, NULL
- },
- { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
- };
- static const struct gdb_xml_attribute svr4_library_list_attributes[] =
- {
- { "version", GDB_XML_AF_NONE, NULL, NULL },
- { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
- { NULL, GDB_XML_AF_NONE, NULL, NULL }
- };
- static const struct gdb_xml_element svr4_library_list_elements[] =
- {
- { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
- GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
- { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
- };
- /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
- Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
- case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
- empty, caller is responsible for freeing all its entries. */
- static int
- svr4_parse_libraries (const char *document, struct svr4_library_list *list)
- {
- struct cleanup *back_to = make_cleanup (svr4_free_library_list,
- &list->head);
- memset (list, 0, sizeof (*list));
- list->tailp = &list->head;
- if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
- svr4_library_list_elements, document, list) == 0)
- {
- /* Parsed successfully, keep the result. */
- discard_cleanups (back_to);
- return 1;
- }
- do_cleanups (back_to);
- return 0;
- }
- /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
- Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
- case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
- empty, caller is responsible for freeing all its entries.
- Note that ANNEX must be NULL if the remote does not explicitly allow
- qXfer:libraries-svr4:read packets with non-empty annexes. Support for
- this can be checked using target_augmented_libraries_svr4_read (). */
- static int
- svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
- const char *annex)
- {
- char *svr4_library_document;
- int result;
- struct cleanup *back_to;
- gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
- /* Fetch the list of shared libraries. */
- svr4_library_document = target_read_stralloc (¤t_target,
- TARGET_OBJECT_LIBRARIES_SVR4,
- annex);
- if (svr4_library_document == NULL)
- return 0;
- back_to = make_cleanup (xfree, svr4_library_document);
- result = svr4_parse_libraries (svr4_library_document, list);
- do_cleanups (back_to);
- return result;
- }
- #else
- static int
- svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
- const char *annex)
- {
- return 0;
- }
- #endif
- /* If no shared library information is available from the dynamic
- linker, build a fallback list from other sources. */
- static struct so_list *
- svr4_default_sos (void)
- {
- struct svr4_info *info = get_svr4_info ();
- struct so_list *new;
- if (!info->debug_loader_offset_p)
- return NULL;
- new = XCNEW (struct so_list);
- new->lm_info = xzalloc (sizeof (struct lm_info));
- /* Nothing will ever check the other fields if we set l_addr_p. */
- new->lm_info->l_addr = info->debug_loader_offset;
- new->lm_info->l_addr_p = 1;
- strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
- new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
- strcpy (new->so_original_name, new->so_name);
- return new;
- }
- /* Read the whole inferior libraries chain starting at address LM.
- Expect the first entry in the chain's previous entry to be PREV_LM.
- Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
- first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
- to it. Returns nonzero upon success. If zero is returned the
- entries stored to LINK_PTR_PTR are still valid although they may
- represent only part of the inferior library list. */
- static int
- svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
- struct so_list ***link_ptr_ptr, int ignore_first)
- {
- CORE_ADDR first_l_name = 0;
- CORE_ADDR next_lm;
- for (; lm != 0; prev_lm = lm, lm = next_lm)
- {
- struct so_list *new;
- struct cleanup *old_chain;
- int errcode;
- char *buffer;
- new = XCNEW (struct so_list);
- old_chain = make_cleanup_free_so (new);
- new->lm_info = lm_info_read (lm);
- if (new->lm_info == NULL)
- {
- do_cleanups (old_chain);
- return 0;
- }
- next_lm = new->lm_info->l_next;
- if (new->lm_info->l_prev != prev_lm)
- {
- warning (_("Corrupted shared library list: %s != %s"),
- paddress (target_gdbarch (), prev_lm),
- paddress (target_gdbarch (), new->lm_info->l_prev));
- do_cleanups (old_chain);
- return 0;
- }
- /* For SVR4 versions, the first entry in the link map is for the
- inferior executable, so we must ignore it. For some versions of
- SVR4, it has no name. For others (Solaris 2.3 for example), it
- does have a name, so we can no longer use a missing name to
- decide when to ignore it. */
- if (ignore_first && new->lm_info->l_prev == 0)
- {
- struct svr4_info *info = get_svr4_info ();
- first_l_name = new->lm_info->l_name;
- info->main_lm_addr = new->lm_info->lm_addr;
- do_cleanups (old_chain);
- continue;
- }
- /* Extract this shared object's name. */
- target_read_string (new->lm_info->l_name, &buffer,
- SO_NAME_MAX_PATH_SIZE - 1, &errcode);
- if (errcode != 0)
- {
- /* If this entry's l_name address matches that of the
- inferior executable, then this is not a normal shared
- object, but (most likely) a vDSO. In this case, silently
- skip it; otherwise emit a warning. */
- if (first_l_name == 0 || new->lm_info->l_name != first_l_name)
- warning (_("Can't read pathname for load map: %s."),
- safe_strerror (errcode));
- do_cleanups (old_chain);
- continue;
- }
- strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
- new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
- strcpy (new->so_original_name, new->so_name);
- xfree (buffer);
- /* If this entry has no name, or its name matches the name
- for the main executable, don't include it in the list. */
- if (! new->so_name[0] || match_main (new->so_name))
- {
- do_cleanups (old_chain);
- continue;
- }
- discard_cleanups (old_chain);
- new->next = 0;
- **link_ptr_ptr = new;
- *link_ptr_ptr = &new->next;
- }
- return 1;
- }
- /* Read the full list of currently loaded shared objects directly
- from the inferior, without referring to any libraries read and
- stored by the probes interface. Handle special cases relating
- to the first elements of the list. */
- static struct so_list *
- svr4_current_sos_direct (struct svr4_info *info)
- {
- CORE_ADDR lm;
- struct so_list *head = NULL;
- struct so_list **link_ptr = &head;
- struct cleanup *back_to;
- int ignore_first;
- struct svr4_library_list library_list;
- /* Fall back to manual examination of the target if the packet is not
- supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
- tests a case where gdbserver cannot find the shared libraries list while
- GDB itself is able to find it via SYMFILE_OBJFILE.
- Unfortunately statically linked inferiors will also fall back through this
- suboptimal code path. */
- info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
- NULL);
- if (info->using_xfer)
- {
- if (library_list.main_lm)
- info->main_lm_addr = library_list.main_lm;
- return library_list.head ? library_list.head : svr4_default_sos ();
- }
- /* Always locate the debug struct, in case it has moved. */
- info->debug_base = 0;
- locate_base (info);
- /* If we can't find the dynamic linker's base structure, this
- must not be a dynamically linked executable. Hmm. */
- if (! info->debug_base)
- return svr4_default_sos ();
- /* Assume that everything is a library if the dynamic loader was loaded
- late by a static executable. */
- if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
- ignore_first = 0;
- else
- ignore_first = 1;
- back_to = make_cleanup (svr4_free_library_list, &head);
- /* Walk the inferior's link map list, and build our list of
- `struct so_list' nodes. */
- lm = solib_svr4_r_map (info);
- if (lm)
- svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
- /* On Solaris, the dynamic linker is not in the normal list of
- shared objects, so make sure we pick it up too. Having
- symbol information for the dynamic linker is quite crucial
- for skipping dynamic linker resolver code. */
- lm = solib_svr4_r_ldsomap (info);
- if (lm)
- svr4_read_so_list (lm, 0, &link_ptr, 0);
- discard_cleanups (back_to);
- if (head == NULL)
- return svr4_default_sos ();
- return head;
- }
- /* Implement the main part of the "current_sos" target_so_ops
- method. */
- static struct so_list *
- svr4_current_sos_1 (void)
- {
- struct svr4_info *info = get_svr4_info ();
- /* If the solib list has been read and stored by the probes
- interface then we return a copy of the stored list. */
- if (info->solib_list != NULL)
- return svr4_copy_library_list (info->solib_list);
- /* Otherwise obtain the solib list directly from the inferior. */
- return svr4_current_sos_direct (info);
- }
- /* Implement the "current_sos" target_so_ops method. */
- static struct so_list *
- svr4_current_sos (void)
- {
- struct so_list *so_head = svr4_current_sos_1 ();
- struct mem_range vsyscall_range;
- /* Filter out the vDSO module, if present. Its symbol file would
- not be found on disk. The vDSO/vsyscall's OBJFILE is instead
- managed by symfile-mem.c:add_vsyscall_page. */
- if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
- && vsyscall_range.length != 0)
- {
- struct so_list **sop;
- sop = &so_head;
- while (*sop != NULL)
- {
- struct so_list *so = *sop;
- /* We can't simply match the vDSO by starting address alone,
- because lm_info->l_addr_inferior (and also l_addr) do not
- necessarily represent the real starting address of the
- ELF if the vDSO's ELF itself is "prelinked". The l_ld
- field (the ".dynamic" section of the shared object)
- always points at the absolute/resolved address though.
- So check whether that address is inside the vDSO's
- mapping instead.
- E.g., on Linux 3.16 (x86_64) the vDSO is a regular
- 0-based ELF, and we see:
- (gdb) info auxv
- 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
- (gdb) p/x *_r_debug.r_map.l_next
- $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
- And on Linux 2.6.32 (x86_64) we see:
- (gdb) info auxv
- 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
- (gdb) p/x *_r_debug.r_map.l_next
- $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
- Dumping that vDSO shows:
- (gdb) info proc mappings
- 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
- (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
- # readelf -Wa vdso.bin
- [...]
- Entry point address: 0xffffffffff700700
- [...]
- Section Headers:
- [Nr] Name Type Address Off Size
- [ 0] NULL 0000000000000000 000000 000000
- [ 1] .hash HASH ffffffffff700120 000120 000038
- [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
- [...]
- [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
- */
- if (address_in_mem_range (so->lm_info->l_ld, &vsyscall_range))
- {
- *sop = so->next;
- free_so (so);
- break;
- }
- sop = &so->next;
- }
- }
- return so_head;
- }
- /* Get the address of the link_map for a given OBJFILE. */
- CORE_ADDR
- svr4_fetch_objfile_link_map (struct objfile *objfile)
- {
- struct so_list *so;
- struct svr4_info *info = get_svr4_info ();
- /* Cause svr4_current_sos() to be run if it hasn't been already. */
- if (info->main_lm_addr == 0)
- solib_add (NULL, 0, ¤t_target, auto_solib_add);
- /* svr4_current_sos() will set main_lm_addr for the main executable. */
- if (objfile == symfile_objfile)
- return info->main_lm_addr;
- /* The other link map addresses may be found by examining the list
- of shared libraries. */
- for (so = master_so_list (); so; so = so->next)
- if (so->objfile == objfile)
- return so->lm_info->lm_addr;
- /* Not found! */
- return 0;
- }
- /* On some systems, the only way to recognize the link map entry for
- the main executable file is by looking at its name. Return
- non-zero iff SONAME matches one of the known main executable names. */
- static int
- match_main (const char *soname)
- {
- const char * const *mainp;
- for (mainp = main_name_list; *mainp != NULL; mainp++)
- {
- if (strcmp (soname, *mainp) == 0)
- return (1);
- }
- return (0);
- }
- /* Return 1 if PC lies in the dynamic symbol resolution code of the
- SVR4 run time loader. */
- int
- svr4_in_dynsym_resolve_code (CORE_ADDR pc)
- {
- struct svr4_info *info = get_svr4_info ();
- return ((pc >= info->interp_text_sect_low
- && pc < info->interp_text_sect_high)
- || (pc >= info->interp_plt_sect_low
- && pc < info->interp_plt_sect_high)
- || in_plt_section (pc)
- || in_gnu_ifunc_stub (pc));
- }
- /* Given an executable's ABFD and target, compute the entry-point
- address. */
- static CORE_ADDR
- exec_entry_point (struct bfd *abfd, struct target_ops *targ)
- {
- CORE_ADDR addr;
- /* KevinB wrote ... for most targets, the address returned by
- bfd_get_start_address() is the entry point for the start
- function. But, for some targets, bfd_get_start_address() returns
- the address of a function descriptor from which the entry point
- address may be extracted. This address is extracted by
- gdbarch_convert_from_func_ptr_addr(). The method
- gdbarch_convert_from_func_ptr_addr() is the merely the identify
- function for targets which don't use function descriptors. */
- addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
- bfd_get_start_address (abfd),
- targ);
- return gdbarch_addr_bits_remove (target_gdbarch (), addr);
- }
- /* A probe and its associated action. */
- struct probe_and_action
- {
- /* The probe. */
- struct probe *probe;
- /* The relocated address of the probe. */
- CORE_ADDR address;
- /* The action. */
- enum probe_action action;
- };
- /* Returns a hash code for the probe_and_action referenced by p. */
- static hashval_t
- hash_probe_and_action (const void *p)
- {
- const struct probe_and_action *pa = p;
- return (hashval_t) pa->address;
- }
- /* Returns non-zero if the probe_and_actions referenced by p1 and p2
- are equal. */
- static int
- equal_probe_and_action (const void *p1, const void *p2)
- {
- const struct probe_and_action *pa1 = p1;
- const struct probe_and_action *pa2 = p2;
- return pa1->address == pa2->address;
- }
- /* Register a solib event probe and its associated action in the
- probes table. */
- static void
- register_solib_event_probe (struct probe *probe, CORE_ADDR address,
- enum probe_action action)
- {
- struct svr4_info *info = get_svr4_info ();
- struct probe_and_action lookup, *pa;
- void **slot;
- /* Create the probes table, if necessary. */
- if (info->probes_table == NULL)
- info->probes_table = htab_create_alloc (1, hash_probe_and_action,
- equal_probe_and_action,
- xfree, xcalloc, xfree);
- lookup.probe = probe;
- lookup.address = address;
- slot = htab_find_slot (info->probes_table, &lookup, INSERT);
- gdb_assert (*slot == HTAB_EMPTY_ENTRY);
- pa = XCNEW (struct probe_and_action);
- pa->probe = probe;
- pa->address = address;
- pa->action = action;
- *slot = pa;
- }
- /* Get the solib event probe at the specified location, and the
- action associated with it. Returns NULL if no solib event probe
- was found. */
- static struct probe_and_action *
- solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
- {
- struct probe_and_action lookup;
- void **slot;
- lookup.address = address;
- slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
- if (slot == NULL)
- return NULL;
- return (struct probe_and_action *) *slot;
- }
- /* Decide what action to take when the specified solib event probe is
- hit. */
- static enum probe_action
- solib_event_probe_action (struct probe_and_action *pa)
- {
- enum probe_action action;
- unsigned probe_argc;
- struct frame_info *frame = get_current_frame ();
- action = pa->action;
- if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
- return action;
- gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
- /* Check that an appropriate number of arguments has been supplied.
- We expect:
- arg0: Lmid_t lmid (mandatory)
- arg1: struct r_debug *debug_base (mandatory)
- arg2: struct link_map *new (optional, for incremental updates) */
- probe_argc = get_probe_argument_count (pa->probe, frame);
- if (probe_argc == 2)
- action = FULL_RELOAD;
- else if (probe_argc < 2)
- action = PROBES_INTERFACE_FAILED;
- return action;
- }
- /* Populate the shared object list by reading the entire list of
- shared objects from the inferior. Handle special cases relating
- to the first elements of the list. Returns nonzero on success. */
- static int
- solist_update_full (struct svr4_info *info)
- {
- free_solib_list (info);
- info->solib_list = svr4_current_sos_direct (info);
- return 1;
- }
- /* Update the shared object list starting from the link-map entry
- passed by the linker in the probe's third argument. Returns
- nonzero if the list was successfully updated, or zero to indicate
- failure. */
- static int
- solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
- {
- struct so_list *tail;
- CORE_ADDR prev_lm;
- /* svr4_current_sos_direct contains logic to handle a number of
- special cases relating to the first elements of the list. To
- avoid duplicating this logic we defer to solist_update_full
- if the list is empty. */
- if (info->solib_list == NULL)
- return 0;
- /* Fall back to a full update if we are using a remote target
- that does not support incremental transfers. */
- if (info->using_xfer && !target_augmented_libraries_svr4_read ())
- return 0;
- /* Walk to the end of the list. */
- for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
- /* Nothing. */;
- prev_lm = tail->lm_info->lm_addr;
- /* Read the new objects. */
- if (info->using_xfer)
- {
- struct svr4_library_list library_list;
- char annex[64];
- xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
- phex_nz (lm, sizeof (lm)),
- phex_nz (prev_lm, sizeof (prev_lm)));
- if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
- return 0;
- tail->next = library_list.head;
- }
- else
- {
- struct so_list **link = &tail->next;
- /* IGNORE_FIRST may safely be set to zero here because the
- above check and deferral to solist_update_full ensures
- that this call to svr4_read_so_list will never see the
- first element. */
- if (!svr4_read_so_list (lm, prev_lm, &link, 0))
- return 0;
- }
- return 1;
- }
- /* Disable the probes-based linker interface and revert to the
- original interface. We don't reset the breakpoints as the
- ones set up for the probes-based interface are adequate. */
- static void
- disable_probes_interface_cleanup (void *arg)
- {
- struct svr4_info *info = get_svr4_info ();
- warning (_("Probes-based dynamic linker interface failed.\n"
- "Reverting to original interface.\n"));
- free_probes_table (info);
- free_solib_list (info);
- }
- /* Update the solib list as appropriate when using the
- probes-based linker interface. Do nothing if using the
- standard interface. */
- static void
- svr4_handle_solib_event (void)
- {
- struct svr4_info *info = get_svr4_info ();
- struct probe_and_action *pa;
- enum probe_action action;
- struct cleanup *old_chain, *usm_chain;
- struct value *val;
- CORE_ADDR pc, debug_base, lm = 0;
- int is_initial_ns;
- struct frame_info *frame = get_current_frame ();
- /* Do nothing if not using the probes interface. */
- if (info->probes_table == NULL)
- return;
- /* If anything goes wrong we revert to the original linker
- interface. */
- old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
- pc = regcache_read_pc (get_current_regcache ());
- pa = solib_event_probe_at (info, pc);
- if (pa == NULL)
- {
- do_cleanups (old_chain);
- return;
- }
- action = solib_event_probe_action (pa);
- if (action == PROBES_INTERFACE_FAILED)
- {
- do_cleanups (old_chain);
- return;
- }
- if (action == DO_NOTHING)
- {
- discard_cleanups (old_chain);
- return;
- }
- /* evaluate_probe_argument looks up symbols in the dynamic linker
- using find_pc_section. find_pc_section is accelerated by a cache
- called the section map. The section map is invalidated every
- time a shared library is loaded or unloaded, and if the inferior
- is generating a lot of shared library events then the section map
- will be updated every time svr4_handle_solib_event is called.
- We called find_pc_section in svr4_create_solib_event_breakpoints,
- so we can guarantee that the dynamic linker's sections are in the
- section map. We can therefore inhibit section map updates across
- these calls to evaluate_probe_argument and save a lot of time. */
- inhibit_section_map_updates (current_program_space);
- usm_chain = make_cleanup (resume_section_map_updates_cleanup,
- current_program_space);
- val = evaluate_probe_argument (pa->probe, 1, frame);
- if (val == NULL)
- {
- do_cleanups (old_chain);
- return;
- }
- debug_base = value_as_address (val);
- if (debug_base == 0)
- {
- do_cleanups (old_chain);
- return;
- }
- /* Always locate the debug struct, in case it moved. */
- info->debug_base = 0;
- if (locate_base (info) == 0)
- {
- do_cleanups (old_chain);
- return;
- }
- /* GDB does not currently support libraries loaded via dlmopen
- into namespaces other than the initial one. We must ignore
- any namespace other than the initial namespace here until
- support for this is added to GDB. */
- if (debug_base != info->debug_base)
- action = DO_NOTHING;
- if (action == UPDATE_OR_RELOAD)
- {
- val = evaluate_probe_argument (pa->probe, 2, frame);
- if (val != NULL)
- lm = value_as_address (val);
- if (lm == 0)
- action = FULL_RELOAD;
- }
- /* Resume section map updates. */
- do_cleanups (usm_chain);
- if (action == UPDATE_OR_RELOAD)
- {
- if (!solist_update_incremental (info, lm))
- action = FULL_RELOAD;
- }
- if (action == FULL_RELOAD)
- {
- if (!solist_update_full (info))
- {
- do_cleanups (old_chain);
- return;
- }
- }
- discard_cleanups (old_chain);
- }
- /* Helper function for svr4_update_solib_event_breakpoints. */
- static int
- svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
- {
- struct bp_location *loc;
- if (b->type != bp_shlib_event)
- {
- /* Continue iterating. */
- return 0;
- }
- for (loc = b->loc; loc != NULL; loc = loc->next)
- {
- struct svr4_info *info;
- struct probe_and_action *pa;
- info = program_space_data (loc->pspace, solib_svr4_pspace_data);
- if (info == NULL || info->probes_table == NULL)
- continue;
- pa = solib_event_probe_at (info, loc->address);
- if (pa == NULL)
- continue;
- if (pa->action == DO_NOTHING)
- {
- if (b->enable_state == bp_disabled && stop_on_solib_events)
- enable_breakpoint (b);
- else if (b->enable_state == bp_enabled && !stop_on_solib_events)
- disable_breakpoint (b);
- }
- break;
- }
- /* Continue iterating. */
- return 0;
- }
- /* Enable or disable optional solib event breakpoints as appropriate.
- Called whenever stop_on_solib_events is changed. */
- static void
- svr4_update_solib_event_breakpoints (void)
- {
- iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
- }
- /* Create and register solib event breakpoints. PROBES is an array
- of NUM_PROBES elements, each of which is vector of probes. A
- solib event breakpoint will be created and registered for each
- probe. */
- static void
- svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
- VEC (probe_p) **probes,
- struct objfile *objfile)
- {
- int i;
- for (i = 0; i < NUM_PROBES; i++)
- {
- enum probe_action action = probe_info[i].action;
- struct probe *probe;
- int ix;
- for (ix = 0;
- VEC_iterate (probe_p, probes[i], ix, probe);
- ++ix)
- {
- CORE_ADDR address = get_probe_address (probe, objfile);
- create_solib_event_breakpoint (gdbarch, address);
- register_solib_event_probe (probe, address, action);
- }
- }
- svr4_update_solib_event_breakpoints ();
- }
- /* Both the SunOS and the SVR4 dynamic linkers call a marker function
- before and after mapping and unmapping shared libraries. The sole
- purpose of this method is to allow debuggers to set a breakpoint so
- they can track these changes.
- Some versions of the glibc dynamic linker contain named probes
- to allow more fine grained stopping. Given the address of the
- original marker function, this function attempts to find these
- probes, and if found, sets breakpoints on those instead. If the
- probes aren't found, a single breakpoint is set on the original
- marker function. */
- static void
- svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
- CORE_ADDR address)
- {
- struct obj_section *os;
- os = find_pc_section (address);
- if (os != NULL)
- {
- int with_prefix;
- for (with_prefix = 0; with_prefix <= 1; with_prefix++)
- {
- VEC (probe_p) *probes[NUM_PROBES];
- int all_probes_found = 1;
- int checked_can_use_probe_arguments = 0;
- int i;
- memset (probes, 0, sizeof (probes));
- for (i = 0; i < NUM_PROBES; i++)
- {
- const char *name = probe_info[i].name;
- struct probe *p;
- char buf[32];
- /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
- shipped with an early version of the probes code in
- which the probes' names were prefixed with "rtld_"
- and the "map_failed" probe did not exist. The
- locations of the probes are otherwise the same, so
- we check for probes with prefixed names if probes
- with unprefixed names are not present. */
- if (with_prefix)
- {
- xsnprintf (buf, sizeof (buf), "rtld_%s", name);
- name = buf;
- }
- probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
- /* The "map_failed" probe did not exist in early
- versions of the probes code in which the probes'
- names were prefixed with "rtld_". */
- if (strcmp (name, "rtld_map_failed") == 0)
- continue;
- if (VEC_empty (probe_p, probes[i]))
- {
- all_probes_found = 0;
- break;
- }
- /* Ensure probe arguments can be evaluated. */
- if (!checked_can_use_probe_arguments)
- {
- p = VEC_index (probe_p, probes[i], 0);
- if (!can_evaluate_probe_arguments (p))
- {
- all_probes_found = 0;
- break;
- }
- checked_can_use_probe_arguments = 1;
- }
- }
- if (all_probes_found)
- svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
- for (i = 0; i < NUM_PROBES; i++)
- VEC_free (probe_p, probes[i]);
- if (all_probes_found)
- return;
- }
- }
- create_solib_event_breakpoint (gdbarch, address);
- }
- /* Helper function for gdb_bfd_lookup_symbol. */
- static int
- cmp_name_and_sec_flags (asymbol *sym, void *data)
- {
- return (strcmp (sym->name, (const char *) data) == 0
- && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
- }
- /* Arrange for dynamic linker to hit breakpoint.
- Both the SunOS and the SVR4 dynamic linkers have, as part of their
- debugger interface, support for arranging for the inferior to hit
- a breakpoint after mapping in the shared libraries. This function
- enables that breakpoint.
- For SunOS, there is a special flag location (in_debugger) which we
- set to 1. When the dynamic linker sees this flag set, it will set
- a breakpoint at a location known only to itself, after saving the
- original contents of that place and the breakpoint address itself,
- in it's own internal structures. When we resume the inferior, it
- will eventually take a SIGTRAP when it runs into the breakpoint.
- We handle this (in a different place) by restoring the contents of
- the breakpointed location (which is only known after it stops),
- chasing around to locate the shared libraries that have been
- loaded, then resuming.
- For SVR4, the debugger interface structure contains a member (r_brk)
- which is statically initialized at the time the shared library is
- built, to the offset of a function (_r_debug_state) which is guaran-
- teed to be called once before mapping in a library, and again when
- the mapping is complete. At the time we are examining this member,
- it contains only the unrelocated offset of the function, so we have
- to do our own relocation. Later, when the dynamic linker actually
- runs, it relocates r_brk to be the actual address of _r_debug_state().
- The debugger interface structure also contains an enumeration which
- is set to either RT_ADD or RT_DELETE prior to changing the mapping,
- depending upon whether or not the library is being mapped or unmapped,
- and then set to RT_CONSISTENT after the library is mapped/unmapped. */
- static int
- enable_break (struct svr4_info *info, int from_tty)
- {
- struct bound_minimal_symbol msymbol;
- const char * const *bkpt_namep;
- asection *interp_sect;
- char *interp_name;
- CORE_ADDR sym_addr;
- info->interp_text_sect_low = info->interp_text_sect_high = 0;
- info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
- /* If we already have a shared library list in the target, and
- r_debug contains r_brk, set the breakpoint there - this should
- mean r_brk has already been relocated. Assume the dynamic linker
- is the object containing r_brk. */
- solib_add (NULL, from_tty, ¤t_target, auto_solib_add);
- sym_addr = 0;
- if (info->debug_base && solib_svr4_r_map (info) != 0)
- sym_addr = solib_svr4_r_brk (info);
- if (sym_addr != 0)
- {
- struct obj_section *os;
- sym_addr = gdbarch_addr_bits_remove
- (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
- sym_addr,
- ¤t_target));
- /* On at least some versions of Solaris there's a dynamic relocation
- on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
- we get control before the dynamic linker has self-relocated.
- Check if SYM_ADDR is in a known section, if it is assume we can
- trust its value. This is just a heuristic though, it could go away
- or be replaced if it's getting in the way.
- On ARM we need to know whether the ISA of rtld_db_dlactivity (or
- however it's spelled in your particular system) is ARM or Thumb.
- That knowledge is encoded in the address, if it's Thumb the low bit
- is 1. However, we've stripped that info above and it's not clear
- what all the consequences are of passing a non-addr_bits_remove'd
- address to svr4_create_solib_event_breakpoints. The call to
- find_pc_section verifies we know about the address and have some
- hope of computing the right kind of breakpoint to use (via
- symbol info). It does mean that GDB needs to be pointed at a
- non-stripped version of the dynamic linker in order to obtain
- information it already knows about. Sigh. */
- os = find_pc_section (sym_addr);
- if (os != NULL)
- {
- /* Record the relocated start and end address of the dynamic linker
- text and plt section for svr4_in_dynsym_resolve_code. */
- bfd *tmp_bfd;
- CORE_ADDR load_addr;
- tmp_bfd = os->objfile->obfd;
- load_addr = ANOFFSET (os->objfile->section_offsets,
- SECT_OFF_TEXT (os->objfile));
- interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
- if (interp_sect)
- {
- info->interp_text_sect_low =
- bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
- info->interp_text_sect_high =
- info->interp_text_sect_low
- + bfd_section_size (tmp_bfd, interp_sect);
- }
- interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
- if (interp_sect)
- {
- info->interp_plt_sect_low =
- bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
- info->interp_plt_sect_high =
- info->interp_plt_sect_low
- + bfd_section_size (tmp_bfd, interp_sect);
- }
- svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
- return 1;
- }
- }
- /* Find the program interpreter; if not found, warn the user and drop
- into the old breakpoint at symbol code. */
- interp_name = find_program_interpreter ();
- if (interp_name)
- {
- CORE_ADDR load_addr = 0;
- int load_addr_found = 0;
- int loader_found_in_list = 0;
- struct so_list *so;
- bfd *tmp_bfd = NULL;
- struct target_ops *tmp_bfd_target;
- volatile struct gdb_exception ex;
- sym_addr = 0;
- /* Now we need to figure out where the dynamic linker was
- loaded so that we can load its symbols and place a breakpoint
- in the dynamic linker itself.
- This address is stored on the stack. However, I've been unable
- to find any magic formula to find it for Solaris (appears to
- be trivial on GNU/Linux). Therefore, we have to try an alternate
- mechanism to find the dynamic linker's base address. */
- TRY_CATCH (ex, RETURN_MASK_ALL)
- {
- tmp_bfd = solib_bfd_open (interp_name);
- }
- if (tmp_bfd == NULL)
- goto bkpt_at_symbol;
- /* Now convert the TMP_BFD into a target. That way target, as
- well as BFD operations can be used. */
- tmp_bfd_target = target_bfd_reopen (tmp_bfd);
- /* target_bfd_reopen acquired its own reference, so we can
- release ours now. */
- gdb_bfd_unref (tmp_bfd);
- /* On a running target, we can get the dynamic linker's base
- address from the shared library table. */
- so = master_so_list ();
- while (so)
- {
- if (svr4_same_1 (interp_name, so->so_original_name))
- {
- load_addr_found = 1;
- loader_found_in_list = 1;
- load_addr = lm_addr_check (so, tmp_bfd);
- break;
- }
- so = so->next;
- }
- /* If we were not able to find the base address of the loader
- from our so_list, then try using the AT_BASE auxilliary entry. */
- if (!load_addr_found)
- if (target_auxv_search (¤t_target, AT_BASE, &load_addr) > 0)
- {
- int addr_bit = gdbarch_addr_bit (target_gdbarch ());
- /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
- that `+ load_addr' will overflow CORE_ADDR width not creating
- invalid addresses like 0x101234567 for 32bit inferiors on 64bit
- GDB. */
- if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
- {
- CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
- CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
- tmp_bfd_target);
- gdb_assert (load_addr < space_size);
- /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
- 64bit ld.so with 32bit executable, it should not happen. */
- if (tmp_entry_point < space_size
- && tmp_entry_point + load_addr >= space_size)
- load_addr -= space_size;
- }
- load_addr_found = 1;
- }
- /* Otherwise we find the dynamic linker's base address by examining
- the current pc (which should point at the entry point for the
- dynamic linker) and subtracting the offset of the entry point.
- This is more fragile than the previous approaches, but is a good
- fallback method because it has actually been working well in
- most cases. */
- if (!load_addr_found)
- {
- struct regcache *regcache
- = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
- load_addr = (regcache_read_pc (regcache)
- - exec_entry_point (tmp_bfd, tmp_bfd_target));
- }
- if (!loader_found_in_list)
- {
- info->debug_loader_name = xstrdup (interp_name);
- info->debug_loader_offset_p = 1;
- info->debug_loader_offset = load_addr;
- solib_add (NULL, from_tty, ¤t_target, auto_solib_add);
- }
- /* Record the relocated start and end address of the dynamic linker
- text and plt section for svr4_in_dynsym_resolve_code. */
- interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
- if (interp_sect)
- {
- info->interp_text_sect_low =
- bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
- info->interp_text_sect_high =
- info->interp_text_sect_low
- + bfd_section_size (tmp_bfd, interp_sect);
- }
- interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
- if (interp_sect)
- {
- info->interp_plt_sect_low =
- bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
- info->interp_plt_sect_high =
- info->interp_plt_sect_low
- + bfd_section_size (tmp_bfd, interp_sect);
- }
- /* Now try to set a breakpoint in the dynamic linker. */
- for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
- {
- sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
- (void *) *bkpt_namep);
- if (sym_addr != 0)
- break;
- }
- if (sym_addr != 0)
- /* Convert 'sym_addr' from a function pointer to an address.
- Because we pass tmp_bfd_target instead of the current
- target, this will always produce an unrelocated value. */
- sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
- sym_addr,
- tmp_bfd_target);
- /* We're done with both the temporary bfd and target. Closing
- the target closes the underlying bfd, because it holds the
- only remaining reference. */
- target_close (tmp_bfd_target);
- if (sym_addr != 0)
- {
- svr4_create_solib_event_breakpoints (target_gdbarch (),
- load_addr + sym_addr);
- xfree (interp_name);
- return 1;
- }
- /* For whatever reason we couldn't set a breakpoint in the dynamic
- linker. Warn and drop into the old code. */
- bkpt_at_symbol:
- xfree (interp_name);
- warning (_("Unable to find dynamic linker breakpoint function.\n"
- "GDB will be unable to debug shared library initializers\n"
- "and track explicitly loaded dynamic code."));
- }
- /* Scan through the lists of symbols, trying to look up the symbol and
- set a breakpoint there. Terminate loop when we/if we succeed. */
- for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
- {
- msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
- if ((msymbol.minsym != NULL)
- && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
- {
- sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
- sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
- sym_addr,
- ¤t_target);
- svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
- return 1;
- }
- }
- if (interp_name != NULL && !current_inferior ()->attach_flag)
- {
- for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
- {
- msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
- if ((msymbol.minsym != NULL)
- && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
- {
- sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
- sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
- sym_addr,
- ¤t_target);
- svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
- return 1;
- }
- }
- }
- return 0;
- }
- /* Implement the "special_symbol_handling" target_so_ops method. */
- static void
- svr4_special_symbol_handling (void)
- {
- /* Nothing to do. */
- }
- /* Read the ELF program headers from ABFD. Return the contents and
- set *PHDRS_SIZE to the size of the program headers. */
- static gdb_byte *
- read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
- {
- Elf_Internal_Ehdr *ehdr;
- gdb_byte *buf;
- ehdr = elf_elfheader (abfd);
- *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
- if (*phdrs_size == 0)
- return NULL;
- buf = xmalloc (*phdrs_size);
- if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
- || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
- {
- xfree (buf);
- return NULL;
- }
- return buf;
- }
- /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
- exec_bfd. Otherwise return 0.
- We relocate all of the sections by the same amount. This
- behavior is mandated by recent editions of the System V ABI.
- According to the System V Application Binary Interface,
- Edition 4.1, page 5-5:
- ... Though the system chooses virtual addresses for
- individual processes, it maintains the segments' relative
- positions. Because position-independent code uses relative
- addressesing between segments, the difference between
- virtual addresses in memory must match the difference
- between virtual addresses in the file. The difference
- between the virtual address of any segment in memory and
- the corresponding virtual address in the file is thus a
- single constant value for any one executable or shared
- object in a given process. This difference is the base
- address. One use of the base address is to relocate the
- memory image of the program during dynamic linking.
- The same language also appears in Edition 4.0 of the System V
- ABI and is left unspecified in some of the earlier editions.
- Decide if the objfile needs to be relocated. As indicated above, we will
- only be here when execution is stopped. But during attachment PC can be at
- arbitrary address therefore regcache_read_pc can be misleading (contrary to
- the auxv AT_ENTRY value). Moreover for executable with interpreter section
- regcache_read_pc would point to the interpreter and not the main executable.
- So, to summarize, relocations are necessary when the start address obtained
- from the executable is different from the address in auxv AT_ENTRY entry.
- [ The astute reader will note that we also test to make sure that
- the executable in question has the DYNAMIC flag set. It is my
- opinion that this test is unnecessary (undesirable even). It
- was added to avoid inadvertent relocation of an executable
- whose e_type member in the ELF header is not ET_DYN. There may
- be a time in the future when it is desirable to do relocations
- on other types of files as well in which case this condition
- should either be removed or modified to accomodate the new file
- type. - Kevin, Nov 2000. ] */
- static int
- svr4_exec_displacement (CORE_ADDR *displacementp)
- {
- /* ENTRY_POINT is a possible function descriptor - before
- a call to gdbarch_convert_from_func_ptr_addr. */
- CORE_ADDR entry_point, displacement;
- if (exec_bfd == NULL)
- return 0;
- /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
- being executed themselves and PIE (Position Independent Executable)
- executables are ET_DYN. */
- if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
- return 0;
- if (target_auxv_search (¤t_target, AT_ENTRY, &entry_point) <= 0)
- return 0;
- displacement = entry_point - bfd_get_start_address (exec_bfd);
- /* Verify the DISPLACEMENT candidate complies with the required page
- alignment. It is cheaper than the program headers comparison below. */
- if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
- {
- const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
- /* p_align of PT_LOAD segments does not specify any alignment but
- only congruency of addresses:
- p_offset % p_align == p_vaddr % p_align
- Kernel is free to load the executable with lower alignment. */
- if ((displacement & (elf->minpagesize - 1)) != 0)
- return 0;
- }
- /* Verify that the auxilliary vector describes the same file as exec_bfd, by
- comparing their program headers. If the program headers in the auxilliary
- vector do not match the program headers in the executable, then we are
- looking at a different file than the one used by the kernel - for
- instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
- if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
- {
- /* Be optimistic and clear OK only if GDB was able to verify the headers
- really do not match. */
- int phdrs_size, phdrs2_size, ok = 1;
- gdb_byte *buf, *buf2;
- int arch_size;
- buf = read_program_header (-1, &phdrs_size, &arch_size);
- buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
- if (buf != NULL && buf2 != NULL)
- {
- enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
- /* We are dealing with three different addresses. EXEC_BFD
- represents current address in on-disk file. target memory content
- may be different from EXEC_BFD as the file may have been prelinked
- to a different address after the executable has been loaded.
- Moreover the address of placement in target memory can be
- different from what the program headers in target memory say -
- this is the goal of PIE.
- Detected DISPLACEMENT covers both the offsets of PIE placement and
- possible new prelink performed after start of the program. Here
- relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
- content offset for the verification purpose. */
- if (phdrs_size != phdrs2_size
- || bfd_get_arch_size (exec_bfd) != arch_size)
- ok = 0;
- else if (arch_size == 32
- && phdrs_size >= sizeof (Elf32_External_Phdr)
- && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
- {
- Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
- Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
- CORE_ADDR displacement = 0;
- int i;
- /* DISPLACEMENT could be found more easily by the difference of
- ehdr2->e_entry. But we haven't read the ehdr yet, and we
- already have enough information to compute that displacement
- with what we've read. */
- for (i = 0; i < ehdr2->e_phnum; i++)
- if (phdr2[i].p_type == PT_LOAD)
- {
- Elf32_External_Phdr *phdrp;
- gdb_byte *buf_vaddr_p, *buf_paddr_p;
- CORE_ADDR vaddr, paddr;
- CORE_ADDR displacement_vaddr = 0;
- CORE_ADDR displacement_paddr = 0;
- phdrp = &((Elf32_External_Phdr *) buf)[i];
- buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
- buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
- vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
- byte_order);
- displacement_vaddr = vaddr - phdr2[i].p_vaddr;
- paddr = extract_unsigned_integer (buf_paddr_p, 4,
- byte_order);
- displacement_paddr = paddr - phdr2[i].p_paddr;
- if (displacement_vaddr == displacement_paddr)
- displacement = displacement_vaddr;
- break;
- }
- /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
- for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
- {
- Elf32_External_Phdr *phdrp;
- Elf32_External_Phdr *phdr2p;
- gdb_byte *buf_vaddr_p, *buf_paddr_p;
- CORE_ADDR vaddr, paddr;
- asection *plt2_asect;
- phdrp = &((Elf32_External_Phdr *) buf)[i];
- buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
- buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
- phdr2p = &((Elf32_External_Phdr *) buf2)[i];
- /* PT_GNU_STACK is an exception by being never relocated by
- prelink as its addresses are always zero. */
- if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
- continue;
- /* Check also other adjustment combinations - PR 11786. */
- vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
- byte_order);
- vaddr -= displacement;
- store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
- paddr = extract_unsigned_integer (buf_paddr_p, 4,
- byte_order);
- paddr -= displacement;
- store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
- if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
- continue;
- /* Strip modifies the flags and alignment of PT_GNU_RELRO.
- CentOS-5 has problems with filesz, memsz as well.
- See PR 11786. */
- if (phdr2[i].p_type == PT_GNU_RELRO)
- {
- Elf32_External_Phdr tmp_phdr = *phdrp;
- Elf32_External_Phdr tmp_phdr2 = *phdr2p;
- memset (tmp_phdr.p_filesz, 0, 4);
- memset (tmp_phdr.p_memsz, 0, 4);
- memset (tmp_phdr.p_flags, 0, 4);
- memset (tmp_phdr.p_align, 0, 4);
- memset (tmp_phdr2.p_filesz, 0, 4);
- memset (tmp_phdr2.p_memsz, 0, 4);
- memset (tmp_phdr2.p_flags, 0, 4);
- memset (tmp_phdr2.p_align, 0, 4);
- if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
- == 0)
- continue;
- }
- /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
- plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
- if (plt2_asect)
- {
- int content2;
- gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
- CORE_ADDR filesz;
- content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
- & SEC_HAS_CONTENTS) != 0;
- filesz = extract_unsigned_integer (buf_filesz_p, 4,
- byte_order);
- /* PLT2_ASECT is from on-disk file (exec_bfd) while
- FILESZ is from the in-memory image. */
- if (content2)
- filesz += bfd_get_section_size (plt2_asect);
- else
- filesz -= bfd_get_section_size (plt2_asect);
- store_unsigned_integer (buf_filesz_p, 4, byte_order,
- filesz);
- if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
- continue;
- }
- ok = 0;
- break;
- }
- }
- else if (arch_size == 64
- && phdrs_size >= sizeof (Elf64_External_Phdr)
- && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
- {
- Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
- Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
- CORE_ADDR displacement = 0;
- int i;
- /* DISPLACEMENT could be found more easily by the difference of
- ehdr2->e_entry. But we haven't read the ehdr yet, and we
- already have enough information to compute that displacement
- with what we've read. */
- for (i = 0; i < ehdr2->e_phnum; i++)
- if (phdr2[i].p_type == PT_LOAD)
- {
- Elf64_External_Phdr *phdrp;
- gdb_byte *buf_vaddr_p, *buf_paddr_p;
- CORE_ADDR vaddr, paddr;
- CORE_ADDR displacement_vaddr = 0;
- CORE_ADDR displacement_paddr = 0;
- phdrp = &((Elf64_External_Phdr *) buf)[i];
- buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
- buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
- vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
- byte_order);
- displacement_vaddr = vaddr - phdr2[i].p_vaddr;
- paddr = extract_unsigned_integer (buf_paddr_p, 8,
- byte_order);
- displacement_paddr = paddr - phdr2[i].p_paddr;
- if (displacement_vaddr == displacement_paddr)
- displacement = displacement_vaddr;
- break;
- }
- /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
- for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
- {
- Elf64_External_Phdr *phdrp;
- Elf64_External_Phdr *phdr2p;
- gdb_byte *buf_vaddr_p, *buf_paddr_p;
- CORE_ADDR vaddr, paddr;
- asection *plt2_asect;
- phdrp = &((Elf64_External_Phdr *) buf)[i];
- buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
- buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
- phdr2p = &((Elf64_External_Phdr *) buf2)[i];
- /* PT_GNU_STACK is an exception by being never relocated by
- prelink as its addresses are always zero. */
- if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
- continue;
- /* Check also other adjustment combinations - PR 11786. */
- vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
- byte_order);
- vaddr -= displacement;
- store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
- paddr = extract_unsigned_integer (buf_paddr_p, 8,
- byte_order);
- paddr -= displacement;
- store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
- if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
- continue;
- /* Strip modifies the flags and alignment of PT_GNU_RELRO.
- CentOS-5 has problems with filesz, memsz as well.
- See PR 11786. */
- if (phdr2[i].p_type == PT_GNU_RELRO)
- {
- Elf64_External_Phdr tmp_phdr = *phdrp;
- Elf64_External_Phdr tmp_phdr2 = *phdr2p;
- memset (tmp_phdr.p_filesz, 0, 8);
- memset (tmp_phdr.p_memsz, 0, 8);
- memset (tmp_phdr.p_flags, 0, 4);
- memset (tmp_phdr.p_align, 0, 8);
- memset (tmp_phdr2.p_filesz, 0, 8);
- memset (tmp_phdr2.p_memsz, 0, 8);
- memset (tmp_phdr2.p_flags, 0, 4);
- memset (tmp_phdr2.p_align, 0, 8);
- if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
- == 0)
- continue;
- }
- /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
- plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
- if (plt2_asect)
- {
- int content2;
- gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
- CORE_ADDR filesz;
- content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
- & SEC_HAS_CONTENTS) != 0;
- filesz = extract_unsigned_integer (buf_filesz_p, 8,
- byte_order);
- /* PLT2_ASECT is from on-disk file (exec_bfd) while
- FILESZ is from the in-memory image. */
- if (content2)
- filesz += bfd_get_section_size (plt2_asect);
- else
- filesz -= bfd_get_section_size (plt2_asect);
- store_unsigned_integer (buf_filesz_p, 8, byte_order,
- filesz);
- if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
- continue;
- }
- ok = 0;
- break;
- }
- }
- else
- ok = 0;
- }
- xfree (buf);
- xfree (buf2);
- if (!ok)
- return 0;
- }
- if (info_verbose)
- {
- /* It can be printed repeatedly as there is no easy way to check
- the executable symbols/file has been already relocated to
- displacement. */
- printf_unfiltered (_("Using PIE (Position Independent Executable) "
- "displacement %s for \"%s\".\n"),
- paddress (target_gdbarch (), displacement),
- bfd_get_filename (exec_bfd));
- }
- *displacementp = displacement;
- return 1;
- }
- /* Relocate the main executable. This function should be called upon
- stopping the inferior process at the entry point to the program.
- The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
- different, the main executable is relocated by the proper amount. */
- static void
- svr4_relocate_main_executable (void)
- {
- CORE_ADDR displacement;
- /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
- probably contains the offsets computed using the PIE displacement
- from the previous run, which of course are irrelevant for this run.
- So we need to determine the new PIE displacement and recompute the
- section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
- already contains pre-computed offsets.
- If we cannot compute the PIE displacement, either:
- - The executable is not PIE.
- - SYMFILE_OBJFILE does not match the executable started in the target.
- This can happen for main executable symbols loaded at the host while
- `ld.so --ld-args main-executable' is loaded in the target.
- Then we leave the section offsets untouched and use them as is for
- this run. Either:
- - These section offsets were properly reset earlier, and thus
- already contain the correct values. This can happen for instance
- when reconnecting via the remote protocol to a target that supports
- the `qOffsets' packet.
- - The section offsets were not reset earlier, and the best we can
- hope is that the old offsets are still applicable to the new run. */
- if (! svr4_exec_displacement (&displacement))
- return;
- /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
- addresses. */
- if (symfile_objfile)
- {
- struct section_offsets *new_offsets;
- int i;
- new_offsets = alloca (symfile_objfile->num_sections
- * sizeof (*new_offsets));
- for (i = 0; i < symfile_objfile->num_sections; i++)
- new_offsets->offsets[i] = displacement;
- objfile_relocate (symfile_objfile, new_offsets);
- }
- else if (exec_bfd)
- {
- asection *asect;
- for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
- exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
- (bfd_section_vma (exec_bfd, asect)
- + displacement));
- }
- }
- /* Implement the "create_inferior_hook" target_solib_ops method.
- For SVR4 executables, this first instruction is either the first
- instruction in the dynamic linker (for dynamically linked
- executables) or the instruction at "start" for statically linked
- executables. For dynamically linked executables, the system
- first exec's /lib/libc.so.N, which contains the dynamic linker,
- and starts it running. The dynamic linker maps in any needed
- shared libraries, maps in the actual user executable, and then
- jumps to "start" in the user executable.
- We can arrange to cooperate with the dynamic linker to discover the
- names of shared libraries that are dynamically linked, and the base
- addresses to which they are linked.
- This function is responsible for discovering those names and
- addresses, and saving sufficient information about them to allow
- their symbols to be read at a later time. */
- static void
- svr4_solib_create_inferior_hook (int from_tty)
- {
- struct svr4_info *info;
- info = get_svr4_info ();
- /* Clear the probes-based interface's state. */
- free_probes_table (info);
- free_solib_list (info);
- /* Relocate the main executable if necessary. */
- svr4_relocate_main_executable ();
- /* No point setting a breakpoint in the dynamic linker if we can't
- hit it (e.g., a core file, or a trace file). */
- if (!target_has_execution)
- return;
- if (!svr4_have_link_map_offsets ())
- return;
- if (!enable_break (info, from_tty))
- return;
- }
- static void
- svr4_clear_solib (void)
- {
- struct svr4_info *info;
- info = get_svr4_info ();
- info->debug_base = 0;
- info->debug_loader_offset_p = 0;
- info->debug_loader_offset = 0;
- xfree (info->debug_loader_name);
- info->debug_loader_name = NULL;
- }
- /* Clear any bits of ADDR that wouldn't fit in a target-format
- data pointer. "Data pointer" here refers to whatever sort of
- address the dynamic linker uses to manage its sections. At the
- moment, we don't support shared libraries on any processors where
- code and data pointers are different sizes.
- This isn't really the right solution. What we really need here is
- a way to do arithmetic on CORE_ADDR values that respects the
- natural pointer/address correspondence. (For example, on the MIPS,
- converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
- sign-extend the value. There, simply truncating the bits above
- gdbarch_ptr_bit, as we do below, is no good.) This should probably
- be a new gdbarch method or something. */
- static CORE_ADDR
- svr4_truncate_ptr (CORE_ADDR addr)
- {
- if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
- /* We don't need to truncate anything, and the bit twiddling below
- will fail due to overflow problems. */
- return addr;
- else
- return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
- }
- static void
- svr4_relocate_section_addresses (struct so_list *so,
- struct target_section *sec)
- {
- bfd *abfd = sec->the_bfd_section->owner;
- sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
- sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
- }
- /* Architecture-specific operations. */
- /* Per-architecture data key. */
- static struct gdbarch_data *solib_svr4_data;
- struct solib_svr4_ops
- {
- /* Return a description of the layout of `struct link_map'. */
- struct link_map_offsets *(*fetch_link_map_offsets)(void);
- };
- /* Return a default for the architecture-specific operations. */
- static void *
- solib_svr4_init (struct obstack *obstack)
- {
- struct solib_svr4_ops *ops;
- ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
- ops->fetch_link_map_offsets = NULL;
- return ops;
- }
- /* Set the architecture-specific `struct link_map_offsets' fetcher for
- GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
- void
- set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
- struct link_map_offsets *(*flmo) (void))
- {
- struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
- ops->fetch_link_map_offsets = flmo;
- set_solib_ops (gdbarch, &svr4_so_ops);
- }
- /* Fetch a link_map_offsets structure using the architecture-specific
- `struct link_map_offsets' fetcher. */
- static struct link_map_offsets *
- svr4_fetch_link_map_offsets (void)
- {
- struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
- gdb_assert (ops->fetch_link_map_offsets);
- return ops->fetch_link_map_offsets ();
- }
- /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
- static int
- svr4_have_link_map_offsets (void)
- {
- struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
- return (ops->fetch_link_map_offsets != NULL);
- }
- /* Most OS'es that have SVR4-style ELF dynamic libraries define a
- `struct r_debug' and a `struct link_map' that are binary compatible
- with the origional SVR4 implementation. */
- /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
- for an ILP32 SVR4 system. */
- struct link_map_offsets *
- svr4_ilp32_fetch_link_map_offsets (void)
- {
- static struct link_map_offsets lmo;
- static struct link_map_offsets *lmp = NULL;
- if (lmp == NULL)
- {
- lmp = &lmo;
- lmo.r_version_offset = 0;
- lmo.r_version_size = 4;
- lmo.r_map_offset = 4;
- lmo.r_brk_offset = 8;
- lmo.r_ldsomap_offset = 20;
- /* Everything we need is in the first 20 bytes. */
- lmo.link_map_size = 20;
- lmo.l_addr_offset = 0;
- lmo.l_name_offset = 4;
- lmo.l_ld_offset = 8;
- lmo.l_next_offset = 12;
- lmo.l_prev_offset = 16;
- }
- return lmp;
- }
- /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
- for an LP64 SVR4 system. */
- struct link_map_offsets *
- svr4_lp64_fetch_link_map_offsets (void)
- {
- static struct link_map_offsets lmo;
- static struct link_map_offsets *lmp = NULL;
- if (lmp == NULL)
- {
- lmp = &lmo;
- lmo.r_version_offset = 0;
- lmo.r_version_size = 4;
- lmo.r_map_offset = 8;
- lmo.r_brk_offset = 16;
- lmo.r_ldsomap_offset = 40;
- /* Everything we need is in the first 40 bytes. */
- lmo.link_map_size = 40;
- lmo.l_addr_offset = 0;
- lmo.l_name_offset = 8;
- lmo.l_ld_offset = 16;
- lmo.l_next_offset = 24;
- lmo.l_prev_offset = 32;
- }
- return lmp;
- }
- struct target_so_ops svr4_so_ops;
- /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
- different rule for symbol lookup. The lookup begins here in the DSO, not in
- the main executable. */
- static struct symbol *
- elf_lookup_lib_symbol (struct objfile *objfile,
- const char *name,
- const domain_enum domain)
- {
- bfd *abfd;
- if (objfile == symfile_objfile)
- abfd = exec_bfd;
- else
- {
- /* OBJFILE should have been passed as the non-debug one. */
- gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
- abfd = objfile->obfd;
- }
- if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
- return NULL;
- return lookup_global_symbol_from_objfile (objfile, name, domain);
- }
- extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
- void
- _initialize_svr4_solib (void)
- {
- solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
- solib_svr4_pspace_data
- = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
- svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
- svr4_so_ops.free_so = svr4_free_so;
- svr4_so_ops.clear_so = svr4_clear_so;
- svr4_so_ops.clear_solib = svr4_clear_solib;
- svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
- svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
- svr4_so_ops.current_sos = svr4_current_sos;
- svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
- svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
- svr4_so_ops.bfd_open = solib_bfd_open;
- svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
- svr4_so_ops.same = svr4_same;
- svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
- svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
- svr4_so_ops.handle_event = svr4_handle_solib_event;
- }