- /* Vector API for GDB.
- Copyright (C) 2004-2015 Free Software Foundation, Inc.
- Contributed by Nathan Sidwell <nathan@codesourcery.com>
- This file is part of GDB.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
- #if !defined (GDB_VEC_H)
- #define GDB_VEC_H
- /* The macros here implement a set of templated vector types and
- associated interfaces. These templates are implemented with
- macros, as we're not in C++ land. The interface functions are
- typesafe and use static inline functions, sometimes backed by
- out-of-line generic functions.
- Because of the different behavior of structure objects, scalar
- objects and of pointers, there are three flavors, one for each of
- these variants. Both the structure object and pointer variants
- pass pointers to objects around -- in the former case the pointers
- are stored into the vector and in the latter case the pointers are
- dereferenced and the objects copied into the vector. The scalar
- object variant is suitable for int-like objects, and the vector
- elements are returned by value.
- There are both 'index' and 'iterate' accessors. The iterator
- returns a boolean iteration condition and updates the iteration
- variable passed by reference. Because the iterator will be
- inlined, the address-of can be optimized away.
- The vectors are implemented using the trailing array idiom, thus
- they are not resizeable without changing the address of the vector
- object itself. This means you cannot have variables or fields of
- vector type -- always use a pointer to a vector. The one exception
- is the final field of a structure, which could be a vector type.
- You will have to use the embedded_size & embedded_init calls to
- create such objects, and they will probably not be resizeable (so
- don't use the 'safe' allocation variants). The trailing array
- idiom is used (rather than a pointer to an array of data), because,
- if we allow NULL to also represent an empty vector, empty vectors
- occupy minimal space in the structure containing them.
- Each operation that increases the number of active elements is
- available in 'quick' and 'safe' variants. The former presumes that
- there is sufficient allocated space for the operation to succeed
- (it dies if there is not). The latter will reallocate the
- vector, if needed. Reallocation causes an exponential increase in
- vector size. If you know you will be adding N elements, it would
- be more efficient to use the reserve operation before adding the
- elements with the 'quick' operation. This will ensure there are at
- least as many elements as you ask for, it will exponentially
- increase if there are too few spare slots. If you want reserve a
- specific number of slots, but do not want the exponential increase
- (for instance, you know this is the last allocation), use a
- negative number for reservation. You can also create a vector of a
- specific size from the get go.
- You should prefer the push and pop operations, as they append and
- remove from the end of the vector. If you need to remove several
- items in one go, use the truncate operation. The insert and remove
- operations allow you to change elements in the middle of the
- vector. There are two remove operations, one which preserves the
- element ordering 'ordered_remove', and one which does not
- 'unordered_remove'. The latter function copies the end element
- into the removed slot, rather than invoke a memmove operation. The
- 'lower_bound' function will determine where to place an item in the
- array using insert that will maintain sorted order.
- If you need to directly manipulate a vector, then the 'address'
- accessor will return the address of the start of the vector. Also
- the 'space' predicate will tell you whether there is spare capacity
- in the vector. You will not normally need to use these two functions.
- Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro.
- Variables of vector type are declared using a VEC(TYPEDEF) macro.
- The characters O, P and I indicate whether TYPEDEF is a pointer
- (P), object (O) or integral (I) type. Be careful to pick the
- correct one, as you'll get an awkward and inefficient API if you
- use the wrong one. There is a check, which results in a
- compile-time warning, for the P and I versions, but there is no
- check for the O versions, as that is not possible in plain C.
- An example of their use would be,
- DEF_VEC_P(tree); // non-managed tree vector.
- struct my_struct {
- VEC(tree) *v; // A (pointer to) a vector of tree pointers.
- };
- struct my_struct *s;
- if (VEC_length(tree, s->v)) { we have some contents }
- VEC_safe_push(tree, s->v, decl); // append some decl onto the end
- for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++)
- { do something with elt }
- */
- /* Macros to invoke API calls. A single macro works for both pointer
- and object vectors, but the argument and return types might well be
- different. In each macro, T is the typedef of the vector elements.
- Some of these macros pass the vector, V, by reference (by taking
- its address), this is noted in the descriptions. */
- /* Length of vector
- unsigned VEC_T_length(const VEC(T) *v);
- Return the number of active elements in V. V can be NULL, in which
- case zero is returned. */
- #define VEC_length(T,V) (VEC_OP(T,length)(V))
- /* Check if vector is empty
- int VEC_T_empty(const VEC(T) *v);
- Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
- #define VEC_empty(T,V) (VEC_length (T,V) == 0)
- /* Get the final element of the vector.
- T VEC_T_last(VEC(T) *v); // Integer
- T VEC_T_last(VEC(T) *v); // Pointer
- T *VEC_T_last(VEC(T) *v); // Object
- Return the final element. V must not be empty. */
- #define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO))
- /* Index into vector
- T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
- T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
- T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
- Return the IX'th element. If IX must be in the domain of V. */
- #define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO))
- /* Iterate over vector
- int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
- int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
- int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
- Return iteration condition and update PTR to point to the IX'th
- element. At the end of iteration, sets PTR to NULL. Use this to
- iterate over the elements of a vector as follows,
- for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
- continue; */
- #define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P)))
- /* Allocate new vector.
- VEC(T,A) *VEC_T_alloc(int reserve);
- Allocate a new vector with space for RESERVE objects. If RESERVE
- is zero, NO vector is created. */
- #define VEC_alloc(T,N) (VEC_OP(T,alloc)(N))
- /* Free a vector.
- void VEC_T_free(VEC(T,A) *&);
- Free a vector and set it to NULL. */
- #define VEC_free(T,V) (VEC_OP(T,free)(&V))
- /* A cleanup function for a vector.
- void VEC_T_cleanup(void *);
- Clean up a vector. */
- #define VEC_cleanup(T) (VEC_OP(T,cleanup))
- /* Use these to determine the required size and initialization of a
- vector embedded within another structure (as the final member).
- size_t VEC_T_embedded_size(int reserve);
- void VEC_T_embedded_init(VEC(T) *v, int reserve);
- These allow the caller to perform the memory allocation. */
- #define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N))
- #define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N))
- /* Copy a vector.
- VEC(T,A) *VEC_T_copy(VEC(T) *);
- Copy the live elements of a vector into a new vector. The new and
- old vectors need not be allocated by the same mechanism. */
- #define VEC_copy(T,V) (VEC_OP(T,copy)(V))
- /* Merge two vectors.
- VEC(T,A) *VEC_T_merge(VEC(T) *, VEC(T) *);
- Copy the live elements of both vectors into a new vector. The new
- and old vectors need not be allocated by the same mechanism. */
- #define VEC_merge(T,V1,V2) (VEC_OP(T,merge)(V1, V2))
- /* Determine if a vector has additional capacity.
- int VEC_T_space (VEC(T) *v,int reserve)
- If V has space for RESERVE additional entries, return nonzero. You
- usually only need to use this if you are doing your own vector
- reallocation, for instance on an embedded vector. This returns
- nonzero in exactly the same circumstances that VEC_T_reserve
- will. */
- #define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO))
- /* Reserve space.
- int VEC_T_reserve(VEC(T,A) *&v, int reserve);
- Ensure that V has at least abs(RESERVE) slots available. The
- signedness of RESERVE determines the reallocation behavior. A
- negative value will not create additional headroom beyond that
- requested. A positive value will create additional headroom. Note
- this can cause V to be reallocated. Returns nonzero iff
- reallocation actually occurred. */
- #define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO))
- /* Push object with no reallocation
- T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
- T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
- T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
- Push a new element onto the end, returns a pointer to the slot
- filled in. For object vectors, the new value can be NULL, in which
- case NO initialization is performed. There must
- be sufficient space in the vector. */
- #define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO))
- /* Push object with reallocation
- T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer
- T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer
- T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object
- Push a new element onto the end, returns a pointer to the slot
- filled in. For object vectors, the new value can be NULL, in which
- case NO initialization is performed. Reallocates V, if needed. */
- #define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO))
- /* Pop element off end
- T VEC_T_pop (VEC(T) *v); // Integer
- T VEC_T_pop (VEC(T) *v); // Pointer
- void VEC_T_pop (VEC(T) *v); // Object
- Pop the last element off the end. Returns the element popped, for
- pointer vectors. */
- #define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO))
- /* Truncate to specific length
- void VEC_T_truncate (VEC(T) *v, unsigned len);
- Set the length as specified. The new length must be less than or
- equal to the current length. This is an O(1) operation. */
- #define VEC_truncate(T,V,I) \
- (VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO))
- /* Grow to a specific length.
- void VEC_T_safe_grow (VEC(T,A) *&v, int len);
- Grow the vector to a specific length. The LEN must be as
- long or longer than the current length. The new elements are
- uninitialized. */
- #define VEC_safe_grow(T,V,I) \
- (VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO))
- /* Replace element
- T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
- T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
- T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
- Replace the IXth element of V with a new value, VAL. For pointer
- vectors returns the original value. For object vectors returns a
- pointer to the new value. For object vectors the new value can be
- NULL, in which case no overwriting of the slot is actually
- performed. */
- #define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO))
- /* Insert object with no reallocation
- T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
- T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
- T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
- Insert an element, VAL, at the IXth position of V. Return a pointer
- to the slot created. For vectors of object, the new value can be
- NULL, in which case no initialization of the inserted slot takes
- place. There must be sufficient space. */
- #define VEC_quick_insert(T,V,I,O) \
- (VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO))
- /* Insert object with reallocation
- T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
- T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
- T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
- Insert an element, VAL, at the IXth position of V. Return a pointer
- to the slot created. For vectors of object, the new value can be
- NULL, in which case no initialization of the inserted slot takes
- place. Reallocate V, if necessary. */
- #define VEC_safe_insert(T,V,I,O) \
- (VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO))
- /* Remove element retaining order
- T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
- T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
- void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
- Remove an element from the IXth position of V. Ordering of
- remaining elements is preserved. For pointer vectors returns the
- removed object. This is an O(N) operation due to a memmove. */
- #define VEC_ordered_remove(T,V,I) \
- (VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO))
- /* Remove element destroying order
- T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
- T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
- void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
- Remove an element from the IXth position of V. Ordering of
- remaining elements is destroyed. For pointer vectors returns the
- removed object. This is an O(1) operation. */
- #define VEC_unordered_remove(T,V,I) \
- (VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO))
- /* Remove a block of elements
- void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
- Remove LEN elements starting at the IXth. Ordering is retained.
- This is an O(N) operation due to memmove. */
- #define VEC_block_remove(T,V,I,L) \
- (VEC_OP(T,block_remove)(V,I,L VEC_ASSERT_INFO))
- /* Get the address of the array of elements
- T *VEC_T_address (VEC(T) v)
- If you need to directly manipulate the array (for instance, you
- want to feed it to qsort), use this accessor. */
- #define VEC_address(T,V) (VEC_OP(T,address)(V))
- /* Find the first index in the vector not less than the object.
- unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
- int (*lessthan) (const T, const T)); // Integer
- unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
- int (*lessthan) (const T, const T)); // Pointer
- unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
- int (*lessthan) (const T*, const T*)); // Object
- Find the first position in which VAL could be inserted without
- changing the ordering of V. LESSTHAN is a function that returns
- true if the first argument is strictly less than the second. */
- #define VEC_lower_bound(T,V,O,LT) \
- (VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO))
- /* Reallocate an array of elements with prefix. */
- extern void *vec_p_reserve (void *, int);
- extern void *vec_o_reserve (void *, int, size_t, size_t);
- #define vec_free_(V) xfree (V)
- #define VEC_ASSERT_INFO ,__FILE__,__LINE__
- #define VEC_ASSERT_DECL ,const char *file_,unsigned line_
- #define VEC_ASSERT_PASS ,file_,line_
- #define vec_assert(expr, op) \
- ((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, \
- FUNCTION_NAME), 0)))
- #define VEC(T) VEC_##T
- #define VEC_OP(T,OP) VEC_##T##_##OP
- #define VEC_T(T) \
- typedef struct VEC(T) \
- { \
- unsigned num; \
- unsigned alloc; \
- T vec[1]; \
- } VEC(T)
- /* Vector of integer-like object. */
- #define DEF_VEC_I(T) \
- static inline void VEC_OP (T,must_be_integral_type) (void) \
- { \
- (void)~(T)0; \
- } \
- \
- VEC_T(T); \
- DEF_VEC_FUNC_P(T) \
- DEF_VEC_ALLOC_FUNC_I(T) \
- struct vec_swallow_trailing_semi
- /* Vector of pointer to object. */
- #define DEF_VEC_P(T) \
- static inline void VEC_OP (T,must_be_pointer_type) (void) \
- { \
- (void)((T)1 == (void *)1); \
- } \
- \
- VEC_T(T); \
- DEF_VEC_FUNC_P(T) \
- DEF_VEC_ALLOC_FUNC_P(T) \
- struct vec_swallow_trailing_semi
- /* Vector of object. */
- #define DEF_VEC_O(T) \
- VEC_T(T); \
- DEF_VEC_FUNC_O(T) \
- DEF_VEC_ALLOC_FUNC_O(T) \
- struct vec_swallow_trailing_semi
- #define DEF_VEC_ALLOC_FUNC_I(T) \
- static inline VEC(T) *VEC_OP (T,alloc) \
- (int alloc_) \
- { \
- /* We must request exact size allocation, hence the negation. */ \
- return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
- offsetof (VEC(T),vec), sizeof (T)); \
- } \
- \
- static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
- { \
- size_t len_ = vec_ ? vec_->num : 0; \
- VEC (T) *new_vec_ = NULL; \
- \
- if (len_) \
- { \
- /* We must request exact size allocation, hence the negation. */ \
- new_vec_ = (VEC (T) *) \
- vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
- \
- new_vec_->num = len_; \
- memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
- } \
- return new_vec_; \
- } \
- \
- static inline VEC(T) *VEC_OP (T,merge) (VEC(T) *vec1_, VEC(T) *vec2_) \
- { \
- if (vec1_ && vec2_) \
- { \
- size_t len_ = vec1_->num + vec2_->num; \
- VEC (T) *new_vec_ = NULL; \
- \
- /* We must request exact size allocation, hence the negation. */ \
- new_vec_ = (VEC (T) *) \
- vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
- \
- new_vec_->num = len_; \
- memcpy (new_vec_->vec, vec1_->vec, sizeof (T) * vec1_->num); \
- memcpy (new_vec_->vec + vec1_->num, vec2_->vec, \
- sizeof (T) * vec2_->num); \
- \
- return new_vec_; \
- } \
- else \
- return VEC_copy (T, vec1_ ? vec1_ : vec2_); \
- } \
- \
- static inline void VEC_OP (T,free) \
- (VEC(T) **vec_) \
- { \
- if (*vec_) \
- vec_free_ (*vec_); \
- *vec_ = NULL; \
- } \
- \
- static inline void VEC_OP (T,cleanup) \
- (void *arg_) \
- { \
- VEC(T) **vec_ = arg_; \
- if (*vec_) \
- vec_free_ (*vec_); \
- *vec_ = NULL; \
- } \
- \
- static inline int VEC_OP (T,reserve) \
- (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
- { \
- int extend = !VEC_OP (T,space) \
- (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
- \
- if (extend) \
- *vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \
- offsetof (VEC(T),vec), sizeof (T)); \
- \
- return extend; \
- } \
- \
- static inline void VEC_OP (T,safe_grow) \
- (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
- { \
- vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
- "safe_grow"); \
- VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \
- VEC_ASSERT_PASS); \
- (*vec_)->num = size_; \
- } \
- \
- static inline T *VEC_OP (T,safe_push) \
- (VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \
- { \
- VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
- \
- return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
- } \
- \
- static inline T *VEC_OP (T,safe_insert) \
- (VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \
- { \
- VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
- \
- return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
- }
- #define DEF_VEC_FUNC_P(T) \
- static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
- { \
- return vec_ ? vec_->num : 0; \
- } \
- \
- static inline T VEC_OP (T,last) \
- (const VEC(T) *vec_ VEC_ASSERT_DECL) \
- { \
- vec_assert (vec_ && vec_->num, "last"); \
- \
- return vec_->vec[vec_->num - 1]; \
- } \
- \
- static inline T VEC_OP (T,index) \
- (const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
- { \
- vec_assert (vec_ && ix_ < vec_->num, "index"); \
- \
- return vec_->vec[ix_]; \
- } \
- \
- static inline int VEC_OP (T,iterate) \
- (const VEC(T) *vec_, unsigned ix_, T *ptr) \
- { \
- if (vec_ && ix_ < vec_->num) \
- { \
- *ptr = vec_->vec[ix_]; \
- return 1; \
- } \
- else \
- { \
- *ptr = 0; \
- return 0; \
- } \
- } \
- \
- static inline size_t VEC_OP (T,embedded_size) \
- (int alloc_) \
- { \
- return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
- } \
- \
- static inline void VEC_OP (T,embedded_init) \
- (VEC(T) *vec_, int alloc_) \
- { \
- vec_->num = 0; \
- vec_->alloc = alloc_; \
- } \
- \
- static inline int VEC_OP (T,space) \
- (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
- { \
- vec_assert (alloc_ >= 0, "space"); \
- return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
- } \
- \
- static inline T *VEC_OP (T,quick_push) \
- (VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \
- { \
- T *slot_; \
- \
- vec_assert (vec_->num < vec_->alloc, "quick_push"); \
- slot_ = &vec_->vec[vec_->num++]; \
- *slot_ = obj_; \
- \
- return slot_; \
- } \
- \
- static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
- { \
- T obj_; \
- \
- vec_assert (vec_->num, "pop"); \
- obj_ = vec_->vec[--vec_->num]; \
- \
- return obj_; \
- } \
- \
- static inline void VEC_OP (T,truncate) \
- (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
- { \
- vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
- if (vec_) \
- vec_->num = size_; \
- } \
- \
- static inline T VEC_OP (T,replace) \
- (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
- { \
- T old_obj_; \
- \
- vec_assert (ix_ < vec_->num, "replace"); \
- old_obj_ = vec_->vec[ix_]; \
- vec_->vec[ix_] = obj_; \
- \
- return old_obj_; \
- } \
- \
- static inline T *VEC_OP (T,quick_insert) \
- (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
- { \
- T *slot_; \
- \
- vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
- slot_ = &vec_->vec[ix_]; \
- memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
- *slot_ = obj_; \
- \
- return slot_; \
- } \
- \
- static inline T VEC_OP (T,ordered_remove) \
- (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
- { \
- T *slot_; \
- T obj_; \
- \
- vec_assert (ix_ < vec_->num, "ordered_remove"); \
- slot_ = &vec_->vec[ix_]; \
- obj_ = *slot_; \
- memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
- \
- return obj_; \
- } \
- \
- static inline T VEC_OP (T,unordered_remove) \
- (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
- { \
- T *slot_; \
- T obj_; \
- \
- vec_assert (ix_ < vec_->num, "unordered_remove"); \
- slot_ = &vec_->vec[ix_]; \
- obj_ = *slot_; \
- *slot_ = vec_->vec[--vec_->num]; \
- \
- return obj_; \
- } \
- \
- static inline void VEC_OP (T,block_remove) \
- (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
- { \
- T *slot_; \
- \
- vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
- slot_ = &vec_->vec[ix_]; \
- vec_->num -= len_; \
- memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
- } \
- \
- static inline T *VEC_OP (T,address) \
- (VEC(T) *vec_) \
- { \
- return vec_ ? vec_->vec : 0; \
- } \
- \
- static inline unsigned VEC_OP (T,lower_bound) \
- (VEC(T) *vec_, const T obj_, \
- int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \
- { \
- unsigned int len_ = VEC_OP (T, length) (vec_); \
- unsigned int half_, middle_; \
- unsigned int first_ = 0; \
- while (len_ > 0) \
- { \
- T middle_elem_; \
- half_ = len_ >> 1; \
- middle_ = first_; \
- middle_ += half_; \
- middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
- if (lessthan_ (middle_elem_, obj_)) \
- { \
- first_ = middle_; \
- ++first_; \
- len_ = len_ - half_ - 1; \
- } \
- else \
- len_ = half_; \
- } \
- return first_; \
- }
- #define DEF_VEC_ALLOC_FUNC_P(T) \
- static inline VEC(T) *VEC_OP (T,alloc) \
- (int alloc_) \
- { \
- /* We must request exact size allocation, hence the negation. */ \
- return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \
- } \
- \
- static inline void VEC_OP (T,free) \
- (VEC(T) **vec_) \
- { \
- if (*vec_) \
- vec_free_ (*vec_); \
- *vec_ = NULL; \
- } \
- \
- static inline void VEC_OP (T,cleanup) \
- (void *arg_) \
- { \
- VEC(T) **vec_ = arg_; \
- if (*vec_) \
- vec_free_ (*vec_); \
- *vec_ = NULL; \
- } \
- \
- static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
- { \
- size_t len_ = vec_ ? vec_->num : 0; \
- VEC (T) *new_vec_ = NULL; \
- \
- if (len_) \
- { \
- /* We must request exact size allocation, hence the negation. */ \
- new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \
- \
- new_vec_->num = len_; \
- memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
- } \
- return new_vec_; \
- } \
- \
- static inline VEC(T) *VEC_OP (T,merge) (VEC(T) *vec1_, VEC(T) *vec2_) \
- { \
- if (vec1_ && vec2_) \
- { \
- size_t len_ = vec1_->num + vec2_->num; \
- VEC (T) *new_vec_ = NULL; \
- \
- /* We must request exact size allocation, hence the negation. */ \
- new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \
- \
- new_vec_->num = len_; \
- memcpy (new_vec_->vec, vec1_->vec, sizeof (T) * vec1_->num); \
- memcpy (new_vec_->vec + vec1_->num, vec2_->vec, \
- sizeof (T) * vec2_->num); \
- \
- return new_vec_; \
- } \
- else \
- return VEC_copy (T, vec1_ ? vec1_ : vec2_); \
- } \
- \
- static inline int VEC_OP (T,reserve) \
- (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
- { \
- int extend = !VEC_OP (T,space) \
- (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
- \
- if (extend) \
- *vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \
- \
- return extend; \
- } \
- \
- static inline void VEC_OP (T,safe_grow) \
- (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
- { \
- vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
- "safe_grow"); \
- VEC_OP (T,reserve) \
- (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
- (*vec_)->num = size_; \
- } \
- \
- static inline T *VEC_OP (T,safe_push) \
- (VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \
- { \
- VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
- \
- return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
- } \
- \
- static inline T *VEC_OP (T,safe_insert) \
- (VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
- { \
- VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
- \
- return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
- }
- #define DEF_VEC_FUNC_O(T) \
- static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
- { \
- return vec_ ? vec_->num : 0; \
- } \
- \
- static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \
- { \
- vec_assert (vec_ && vec_->num, "last"); \
- \
- return &vec_->vec[vec_->num - 1]; \
- } \
- \
- static inline T *VEC_OP (T,index) \
- (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
- { \
- vec_assert (vec_ && ix_ < vec_->num, "index"); \
- \
- return &vec_->vec[ix_]; \
- } \
- \
- static inline int VEC_OP (T,iterate) \
- (VEC(T) *vec_, unsigned ix_, T **ptr) \
- { \
- if (vec_ && ix_ < vec_->num) \
- { \
- *ptr = &vec_->vec[ix_]; \
- return 1; \
- } \
- else \
- { \
- *ptr = 0; \
- return 0; \
- } \
- } \
- \
- static inline size_t VEC_OP (T,embedded_size) \
- (int alloc_) \
- { \
- return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
- } \
- \
- static inline void VEC_OP (T,embedded_init) \
- (VEC(T) *vec_, int alloc_) \
- { \
- vec_->num = 0; \
- vec_->alloc = alloc_; \
- } \
- \
- static inline int VEC_OP (T,space) \
- (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
- { \
- vec_assert (alloc_ >= 0, "space"); \
- return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
- } \
- \
- static inline T *VEC_OP (T,quick_push) \
- (VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \
- { \
- T *slot_; \
- \
- vec_assert (vec_->num < vec_->alloc, "quick_push"); \
- slot_ = &vec_->vec[vec_->num++]; \
- if (obj_) \
- *slot_ = *obj_; \
- \
- return slot_; \
- } \
- \
- static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
- { \
- vec_assert (vec_->num, "pop"); \
- --vec_->num; \
- } \
- \
- static inline void VEC_OP (T,truncate) \
- (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
- { \
- vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
- if (vec_) \
- vec_->num = size_; \
- } \
- \
- static inline T *VEC_OP (T,replace) \
- (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
- { \
- T *slot_; \
- \
- vec_assert (ix_ < vec_->num, "replace"); \
- slot_ = &vec_->vec[ix_]; \
- if (obj_) \
- *slot_ = *obj_; \
- \
- return slot_; \
- } \
- \
- static inline T *VEC_OP (T,quick_insert) \
- (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
- { \
- T *slot_; \
- \
- vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
- slot_ = &vec_->vec[ix_]; \
- memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
- if (obj_) \
- *slot_ = *obj_; \
- \
- return slot_; \
- } \
- \
- static inline void VEC_OP (T,ordered_remove) \
- (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
- { \
- T *slot_; \
- \
- vec_assert (ix_ < vec_->num, "ordered_remove"); \
- slot_ = &vec_->vec[ix_]; \
- memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
- } \
- \
- static inline void VEC_OP (T,unordered_remove) \
- (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
- { \
- vec_assert (ix_ < vec_->num, "unordered_remove"); \
- vec_->vec[ix_] = vec_->vec[--vec_->num]; \
- } \
- \
- static inline void VEC_OP (T,block_remove) \
- (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
- { \
- T *slot_; \
- \
- vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
- slot_ = &vec_->vec[ix_]; \
- vec_->num -= len_; \
- memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
- } \
- \
- static inline T *VEC_OP (T,address) \
- (VEC(T) *vec_) \
- { \
- return vec_ ? vec_->vec : 0; \
- } \
- \
- static inline unsigned VEC_OP (T,lower_bound) \
- (VEC(T) *vec_, const T *obj_, \
- int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \
- { \
- unsigned int len_ = VEC_OP (T, length) (vec_); \
- unsigned int half_, middle_; \
- unsigned int first_ = 0; \
- while (len_ > 0) \
- { \
- T *middle_elem_; \
- half_ = len_ >> 1; \
- middle_ = first_; \
- middle_ += half_; \
- middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
- if (lessthan_ (middle_elem_, obj_)) \
- { \
- first_ = middle_; \
- ++first_; \
- len_ = len_ - half_ - 1; \
- } \
- else \
- len_ = half_; \
- } \
- return first_; \
- }
- #define DEF_VEC_ALLOC_FUNC_O(T) \
- static inline VEC(T) *VEC_OP (T,alloc) \
- (int alloc_) \
- { \
- /* We must request exact size allocation, hence the negation. */ \
- return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
- offsetof (VEC(T),vec), sizeof (T)); \
- } \
- \
- static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
- { \
- size_t len_ = vec_ ? vec_->num : 0; \
- VEC (T) *new_vec_ = NULL; \
- \
- if (len_) \
- { \
- /* We must request exact size allocation, hence the negation. */ \
- new_vec_ = (VEC (T) *) \
- vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
- \
- new_vec_->num = len_; \
- memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
- } \
- return new_vec_; \
- } \
- \
- static inline VEC(T) *VEC_OP (T,merge) (VEC(T) *vec1_, VEC(T) *vec2_) \
- { \
- if (vec1_ && vec2_) \
- { \
- size_t len_ = vec1_->num + vec2_->num; \
- VEC (T) *new_vec_ = NULL; \
- \
- /* We must request exact size allocation, hence the negation. */ \
- new_vec_ = (VEC (T) *) \
- vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
- \
- new_vec_->num = len_; \
- memcpy (new_vec_->vec, vec1_->vec, sizeof (T) * vec1_->num); \
- memcpy (new_vec_->vec + vec1_->num, vec2_->vec, \
- sizeof (T) * vec2_->num); \
- \
- return new_vec_; \
- } \
- else \
- return VEC_copy (T, vec1_ ? vec1_ : vec2_); \
- } \
- \
- static inline void VEC_OP (T,free) \
- (VEC(T) **vec_) \
- { \
- if (*vec_) \
- vec_free_ (*vec_); \
- *vec_ = NULL; \
- } \
- \
- static inline void VEC_OP (T,cleanup) \
- (void *arg_) \
- { \
- VEC(T) **vec_ = arg_; \
- if (*vec_) \
- vec_free_ (*vec_); \
- *vec_ = NULL; \
- } \
- \
- static inline int VEC_OP (T,reserve) \
- (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
- { \
- int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \
- VEC_ASSERT_PASS); \
- \
- if (extend) \
- *vec_ = (VEC(T) *) \
- vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \
- \
- return extend; \
- } \
- \
- static inline void VEC_OP (T,safe_grow) \
- (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
- { \
- vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
- "safe_grow"); \
- VEC_OP (T,reserve) \
- (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
- (*vec_)->num = size_; \
- } \
- \
- static inline T *VEC_OP (T,safe_push) \
- (VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \
- { \
- VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
- \
- return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
- } \
- \
- static inline T *VEC_OP (T,safe_insert) \
- (VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
- { \
- VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
- \
- return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
- }
- #endif /* GDB_VEC_H */