- /* Renesas M32C target-dependent code for GDB, the GNU debugger.
- Copyright (C) 2004-2015 Free Software Foundation, Inc.
- This file is part of GDB.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
- #include "defs.h"
- #include "elf-bfd.h"
- #include "elf/m32c.h"
- #include "gdb/sim-m32c.h"
- #include "dis-asm.h"
- #include "gdbtypes.h"
- #include "regcache.h"
- #include "arch-utils.h"
- #include "frame.h"
- #include "frame-unwind.h"
- #include "dwarf2-frame.h"
- #include "dwarf2expr.h"
- #include "symtab.h"
- #include "gdbcore.h"
- #include "value.h"
- #include "reggroups.h"
- #include "prologue-value.h"
- #include "target.h"
- #include "objfiles.h"
- /* The m32c tdep structure. */
- static struct reggroup *m32c_dma_reggroup;
- struct m32c_reg;
- /* The type of a function that moves the value of REG between CACHE or
- BUF --- in either direction. */
- typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
- struct regcache *cache,
- void *buf);
- struct m32c_reg
- {
- /* The name of this register. */
- const char *name;
- /* Its type. */
- struct type *type;
- /* The architecture this register belongs to. */
- struct gdbarch *arch;
- /* Its GDB register number. */
- int num;
- /* Its sim register number. */
- int sim_num;
- /* Its DWARF register number, or -1 if it doesn't have one. */
- int dwarf_num;
- /* Register group memberships. */
- unsigned int general_p : 1;
- unsigned int dma_p : 1;
- unsigned int system_p : 1;
- unsigned int save_restore_p : 1;
- /* Functions to read its value from a regcache, and write its value
- to a regcache. */
- m32c_move_reg_t *read, *write;
- /* Data for READ and WRITE functions. The exact meaning depends on
- the specific functions selected; see the comments for those
- functions. */
- struct m32c_reg *rx, *ry;
- int n;
- };
- /* An overestimate of the number of raw and pseudoregisters we will
- have. The exact answer depends on the variant of the architecture
- at hand, but we can use this to declare statically allocated
- arrays, and bump it up when needed. */
- #define M32C_MAX_NUM_REGS (75)
- /* The largest assigned DWARF register number. */
- #define M32C_MAX_DWARF_REGNUM (40)
- struct gdbarch_tdep
- {
- /* All the registers for this variant, indexed by GDB register
- number, and the number of registers present. */
- struct m32c_reg regs[M32C_MAX_NUM_REGS];
- /* The number of valid registers. */
- int num_regs;
- /* Interesting registers. These are pointers into REGS. */
- struct m32c_reg *pc, *flg;
- struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
- struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
- struct m32c_reg *sb, *fb, *sp;
- /* A table indexed by DWARF register numbers, pointing into
- REGS. */
- struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
- /* Types for this architecture. We can't use the builtin_type_foo
- types, because they're not initialized when building a gdbarch
- structure. */
- struct type *voyd, *ptr_voyd, *func_voyd;
- struct type *uint8, *uint16;
- struct type *int8, *int16, *int32, *int64;
- /* The types for data address and code address registers. */
- struct type *data_addr_reg_type, *code_addr_reg_type;
- /* The number of bytes a return address pushed by a 'jsr' instruction
- occupies on the stack. */
- int ret_addr_bytes;
- /* The number of bytes an address register occupies on the stack
- when saved by an 'enter' or 'pushm' instruction. */
- int push_addr_bytes;
- };
- /* Types. */
- static void
- make_types (struct gdbarch *arch)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
- unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
- int data_addr_reg_bits, code_addr_reg_bits;
- char type_name[50];
- #if 0
- /* This is used to clip CORE_ADDR values, so this value is
- appropriate both on the m32c, where pointers are 32 bits long,
- and on the m16c, where pointers are sixteen bits long, but there
- may be code above the 64k boundary. */
- set_gdbarch_addr_bit (arch, 24);
- #else
- /* GCC uses 32 bits for addrs in the dwarf info, even though
- only 16/24 bits are used. Setting addr_bit to 24 causes
- errors in reading the dwarf addresses. */
- set_gdbarch_addr_bit (arch, 32);
- #endif
- set_gdbarch_int_bit (arch, 16);
- switch (mach)
- {
- case bfd_mach_m16c:
- data_addr_reg_bits = 16;
- code_addr_reg_bits = 24;
- set_gdbarch_ptr_bit (arch, 16);
- tdep->ret_addr_bytes = 3;
- tdep->push_addr_bytes = 2;
- break;
- case bfd_mach_m32c:
- data_addr_reg_bits = 24;
- code_addr_reg_bits = 24;
- set_gdbarch_ptr_bit (arch, 32);
- tdep->ret_addr_bytes = 4;
- tdep->push_addr_bytes = 4;
- break;
- default:
- gdb_assert_not_reached ("unexpected mach");
- }
- /* The builtin_type_mumble variables are sometimes uninitialized when
- this is called, so we avoid using them. */
- tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
- tdep->ptr_voyd
- = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
- NULL);
- TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
- TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
- tdep->func_voyd = lookup_function_type (tdep->voyd);
- xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
- gdbarch_bfd_arch_info (arch)->printable_name);
- tdep->data_addr_reg_type
- = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
- xstrdup (type_name));
- TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
- TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
- xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
- gdbarch_bfd_arch_info (arch)->printable_name);
- tdep->code_addr_reg_type
- = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
- xstrdup (type_name));
- TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
- TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
- tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
- tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
- tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
- tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
- tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
- tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
- }
- /* Register set. */
- static const char *
- m32c_register_name (struct gdbarch *gdbarch, int num)
- {
- return gdbarch_tdep (gdbarch)->regs[num].name;
- }
- static struct type *
- m32c_register_type (struct gdbarch *arch, int reg_nr)
- {
- return gdbarch_tdep (arch)->regs[reg_nr].type;
- }
- static int
- m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
- {
- return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
- }
- static int
- m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
- && tdep->dwarf_regs[reg_nr])
- return tdep->dwarf_regs[reg_nr]->num;
- else
- /* The DWARF CFI code expects to see -1 for invalid register
- numbers. */
- return -1;
- }
- static int
- m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
- struct reggroup *group)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- struct m32c_reg *reg = &tdep->regs[regnum];
- /* The anonymous raw registers aren't in any groups. */
- if (! reg->name)
- return 0;
- if (group == all_reggroup)
- return 1;
- if (group == general_reggroup
- && reg->general_p)
- return 1;
- if (group == m32c_dma_reggroup
- && reg->dma_p)
- return 1;
- if (group == system_reggroup
- && reg->system_p)
- return 1;
- /* Since the m32c DWARF register numbers refer to cooked registers, not
- raw registers, and frame_pop depends on the save and restore groups
- containing registers the DWARF CFI will actually mention, our save
- and restore groups are cooked registers, not raw registers. (This is
- why we can't use the default reggroup function.) */
- if ((group == save_reggroup
- || group == restore_reggroup)
- && reg->save_restore_p)
- return 1;
- return 0;
- }
- /* Register move functions. We declare them here using
- m32c_move_reg_t to check the types. */
- static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
- static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
- static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
- static m32c_move_reg_t m32c_part_read, m32c_part_write;
- static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
- static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
- /* Copy the value of the raw register REG from CACHE to BUF. */
- static enum register_status
- m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- return regcache_raw_read (cache, reg->num, buf);
- }
- /* Copy the value of the raw register REG from BUF to CACHE. */
- static enum register_status
- m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- regcache_raw_write (cache, reg->num, (const void *) buf);
- return REG_VALID;
- }
- /* Return the value of the 'flg' register in CACHE. */
- static int
- m32c_read_flg (struct regcache *cache)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
- ULONGEST flg;
- regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
- return flg & 0xffff;
- }
- /* Evaluate the real register number of a banked register. */
- static struct m32c_reg *
- m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
- {
- return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
- }
- /* Move the value of a banked register from CACHE to BUF.
- If the value of the 'flg' register in CACHE has any of the bits
- masked in REG->n set, then read REG->ry. Otherwise, read
- REG->rx. */
- static enum register_status
- m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
- return regcache_raw_read (cache, bank_reg->num, buf);
- }
- /* Move the value of a banked register from BUF to CACHE.
- If the value of the 'flg' register in CACHE has any of the bits
- masked in REG->n set, then write REG->ry. Otherwise, write
- REG->rx. */
- static enum register_status
- m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
- regcache_raw_write (cache, bank_reg->num, (const void *) buf);
- return REG_VALID;
- }
- /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
- banked register; on bfd_mach_m16c, it's not. */
- static enum register_status
- m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
- return m32c_raw_read (reg->rx, cache, buf);
- else
- return m32c_banked_read (reg, cache, buf);
- }
- /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
- banked register; on bfd_mach_m16c, it's not. */
- static enum register_status
- m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
- m32c_raw_write (reg->rx, cache, buf);
- else
- m32c_banked_write (reg, cache, buf);
- return REG_VALID;
- }
- /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
- and *LEN_P to the offset and length, in bytes, of the part REG
- occupies in its underlying register. The offset is from the
- lower-addressed end, regardless of the architecture's endianness.
- (The M32C family is always little-endian, but let's keep those
- assumptions out of here.) */
- static void
- m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
- {
- /* The length of the containing register, of which REG is one part. */
- int containing_len = TYPE_LENGTH (reg->rx->type);
- /* The length of one "element" in our imaginary array. */
- int elt_len = TYPE_LENGTH (reg->type);
- /* The offset of REG's "element" from the least significant end of
- the containing register. */
- int elt_offset = reg->n * elt_len;
- /* If we extend off the end, trim the length of the element. */
- if (elt_offset + elt_len > containing_len)
- {
- elt_len = containing_len - elt_offset;
- /* We shouldn't be declaring partial registers that go off the
- end of their containing registers. */
- gdb_assert (elt_len > 0);
- }
- /* Flip the offset around if we're big-endian. */
- if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
- elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
- *offset_p = elt_offset;
- *len_p = elt_len;
- }
- /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
- to BUF. Treating the value of the register REG->rx as an array of
- REG->type values, where higher indices refer to more significant
- bits, read the value of the REG->n'th element. */
- static enum register_status
- m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- int offset, len;
- memset (buf, 0, TYPE_LENGTH (reg->type));
- m32c_find_part (reg, &offset, &len);
- return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
- }
- /* Move the value of a banked register from BUF to CACHE.
- Treating the value of the register REG->rx as an array of REG->type
- values, where higher indices refer to more significant bits, write
- the value of the REG->n'th element. */
- static enum register_status
- m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- int offset, len;
- m32c_find_part (reg, &offset, &len);
- regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
- return REG_VALID;
- }
- /* Move the value of REG from CACHE to BUF. REG's value is the
- concatenation of the values of the registers REG->rx and REG->ry,
- with REG->rx contributing the more significant bits. */
- static enum register_status
- m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- int high_bytes = TYPE_LENGTH (reg->rx->type);
- int low_bytes = TYPE_LENGTH (reg->ry->type);
- /* For address arithmetic. */
- unsigned char *cbuf = buf;
- enum register_status status;
- gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
- if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
- {
- status = regcache_cooked_read (cache, reg->rx->num, cbuf);
- if (status == REG_VALID)
- status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
- }
- else
- {
- status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
- if (status == REG_VALID)
- status = regcache_cooked_read (cache, reg->ry->num, cbuf);
- }
- return status;
- }
- /* Move the value of REG from CACHE to BUF. REG's value is the
- concatenation of the values of the registers REG->rx and REG->ry,
- with REG->rx contributing the more significant bits. */
- static enum register_status
- m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- int high_bytes = TYPE_LENGTH (reg->rx->type);
- int low_bytes = TYPE_LENGTH (reg->ry->type);
- /* For address arithmetic. */
- unsigned char *cbuf = buf;
- gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
- if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
- {
- regcache_cooked_write (cache, reg->rx->num, cbuf);
- regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
- }
- else
- {
- regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
- regcache_cooked_write (cache, reg->ry->num, cbuf);
- }
- return REG_VALID;
- }
- /* Copy the value of the raw register REG from CACHE to BUF. REG is
- the concatenation (from most significant to least) of r3, r2, r1,
- and r0. */
- static enum register_status
- m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
- int len = TYPE_LENGTH (tdep->r0->type);
- enum register_status status;
- /* For address arithmetic. */
- unsigned char *cbuf = buf;
- if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
- {
- status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
- if (status == REG_VALID)
- status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
- if (status == REG_VALID)
- status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
- if (status == REG_VALID)
- status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
- }
- else
- {
- status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
- if (status == REG_VALID)
- status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
- if (status == REG_VALID)
- status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
- if (status == REG_VALID)
- status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
- }
- return status;
- }
- /* Copy the value of the raw register REG from BUF to CACHE. REG is
- the concatenation (from most significant to least) of r3, r2, r1,
- and r0. */
- static enum register_status
- m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
- int len = TYPE_LENGTH (tdep->r0->type);
- /* For address arithmetic. */
- unsigned char *cbuf = buf;
- if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
- {
- regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
- regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
- regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
- regcache_cooked_write (cache, tdep->r3->num, cbuf);
- }
- else
- {
- regcache_cooked_write (cache, tdep->r0->num, cbuf);
- regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
- regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
- regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
- }
- return REG_VALID;
- }
- static enum register_status
- m32c_pseudo_register_read (struct gdbarch *arch,
- struct regcache *cache,
- int cookednum,
- gdb_byte *buf)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
- struct m32c_reg *reg;
- gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
- gdb_assert (arch == get_regcache_arch (cache));
- gdb_assert (arch == tdep->regs[cookednum].arch);
- reg = &tdep->regs[cookednum];
- return reg->read (reg, cache, buf);
- }
- static void
- m32c_pseudo_register_write (struct gdbarch *arch,
- struct regcache *cache,
- int cookednum,
- const gdb_byte *buf)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
- struct m32c_reg *reg;
- gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
- gdb_assert (arch == get_regcache_arch (cache));
- gdb_assert (arch == tdep->regs[cookednum].arch);
- reg = &tdep->regs[cookednum];
- reg->write (reg, cache, (void *) buf);
- }
- /* Add a register with the given fields to the end of ARCH's table.
- Return a pointer to the newly added register. */
- static struct m32c_reg *
- add_reg (struct gdbarch *arch,
- const char *name,
- struct type *type,
- int sim_num,
- m32c_move_reg_t *read,
- m32c_move_reg_t *write,
- struct m32c_reg *rx,
- struct m32c_reg *ry,
- int n)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
- struct m32c_reg *r = &tdep->regs[tdep->num_regs];
- gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
- r->name = name;
- r->type = type;
- r->arch = arch;
- r->num = tdep->num_regs;
- r->sim_num = sim_num;
- r->dwarf_num = -1;
- r->general_p = 0;
- r->dma_p = 0;
- r->system_p = 0;
- r->save_restore_p = 0;
- r->read = read;
- r->write = write;
- r->rx = rx;
- r->ry = ry;
- r->n = n;
- tdep->num_regs++;
- return r;
- }
- /* Record NUM as REG's DWARF register number. */
- static void
- set_dwarf_regnum (struct m32c_reg *reg, int num)
- {
- gdb_assert (num < M32C_MAX_NUM_REGS);
- /* Update the reg->DWARF mapping. Only count the first number
- assigned to this register. */
- if (reg->dwarf_num == -1)
- reg->dwarf_num = num;
- /* Update the DWARF->reg mapping. */
- gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
- }
- /* Mark REG as a general-purpose register, and return it. */
- static struct m32c_reg *
- mark_general (struct m32c_reg *reg)
- {
- reg->general_p = 1;
- return reg;
- }
- /* Mark REG as a DMA register, and return it. */
- static struct m32c_reg *
- mark_dma (struct m32c_reg *reg)
- {
- reg->dma_p = 1;
- return reg;
- }
- /* Mark REG as a SYSTEM register, and return it. */
- static struct m32c_reg *
- mark_system (struct m32c_reg *reg)
- {
- reg->system_p = 1;
- return reg;
- }
- /* Mark REG as a save-restore register, and return it. */
- static struct m32c_reg *
- mark_save_restore (struct m32c_reg *reg)
- {
- reg->save_restore_p = 1;
- return reg;
- }
- #define FLAGBIT_B 0x0010
- #define FLAGBIT_U 0x0080
- /* Handy macros for declaring registers. These all evaluate to
- pointers to the register declared. Macros that define two
- registers evaluate to a pointer to the first. */
- /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
- #define R(name, type, sim_num) \
- (add_reg (arch, (name), (type), (sim_num), \
- m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
- /* The simulator register number for a raw register named NAME. */
- #define SIM(name) (m32c_sim_reg_ ## name)
- /* A raw unsigned 16-bit data register named NAME.
- NAME should be an identifier, not a string. */
- #define R16U(name) \
- (R(#name, tdep->uint16, SIM (name)))
- /* A raw data address register named NAME.
- NAME should be an identifier, not a string. */
- #define RA(name) \
- (R(#name, tdep->data_addr_reg_type, SIM (name)))
- /* A raw code address register named NAME. NAME should
- be an identifier, not a string. */
- #define RC(name) \
- (R(#name, tdep->code_addr_reg_type, SIM (name)))
- /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
- NAME should be an identifier, not a string. */
- #define RP(name, type) \
- (R(#name "0", (type), SIM (name ## 0)), \
- R(#name "1", (type), SIM (name ## 1)) - 1)
- /* A raw banked general-purpose data register named NAME.
- NAME should be an identifier, not a string. */
- #define RBD(name) \
- (R(NULL, tdep->int16, SIM (name ## _bank0)), \
- R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
- /* A raw banked data address register named NAME.
- NAME should be an identifier, not a string. */
- #define RBA(name) \
- (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
- R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
- /* A cooked register named NAME referring to a raw banked register
- from the bank selected by the current value of FLG. RAW_PAIR
- should be a pointer to the first register in the banked pair.
- NAME must be an identifier, not a string. */
- #define CB(name, raw_pair) \
- (add_reg (arch, #name, (raw_pair)->type, 0, \
- m32c_banked_read, m32c_banked_write, \
- (raw_pair), (raw_pair + 1), FLAGBIT_B))
- /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
- access the top and bottom halves of the register pointed to by
- NAME. NAME should be an identifier. */
- #define CHL(name, type) \
- (add_reg (arch, #name "h", (type), 0, \
- m32c_part_read, m32c_part_write, name, NULL, 1), \
- add_reg (arch, #name "l", (type), 0, \
- m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
- /* A register constructed by concatenating the two registers HIGH and
- LOW, whose name is HIGHLOW and whose type is TYPE. */
- #define CCAT(high, low, type) \
- (add_reg (arch, #high #low, (type), 0, \
- m32c_cat_read, m32c_cat_write, (high), (low), 0))
- /* Abbreviations for marking register group membership. */
- #define G(reg) (mark_general (reg))
- #define S(reg) (mark_system (reg))
- #define DMA(reg) (mark_dma (reg))
- /* Construct the register set for ARCH. */
- static void
- make_regs (struct gdbarch *arch)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
- int mach = gdbarch_bfd_arch_info (arch)->mach;
- int num_raw_regs;
- int num_cooked_regs;
- struct m32c_reg *r0;
- struct m32c_reg *r1;
- struct m32c_reg *r2;
- struct m32c_reg *r3;
- struct m32c_reg *a0;
- struct m32c_reg *a1;
- struct m32c_reg *fb;
- struct m32c_reg *sb;
- struct m32c_reg *sp;
- struct m32c_reg *r0hl;
- struct m32c_reg *r1hl;
- struct m32c_reg *r2hl;
- struct m32c_reg *r3hl;
- struct m32c_reg *intbhl;
- struct m32c_reg *r2r0;
- struct m32c_reg *r3r1;
- struct m32c_reg *r3r1r2r0;
- struct m32c_reg *r3r2r1r0;
- struct m32c_reg *a1a0;
- struct m32c_reg *raw_r0_pair = RBD (r0);
- struct m32c_reg *raw_r1_pair = RBD (r1);
- struct m32c_reg *raw_r2_pair = RBD (r2);
- struct m32c_reg *raw_r3_pair = RBD (r3);
- struct m32c_reg *raw_a0_pair = RBA (a0);
- struct m32c_reg *raw_a1_pair = RBA (a1);
- struct m32c_reg *raw_fb_pair = RBA (fb);
- /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
- We always declare both raw registers, and deal with the distinction
- in the pseudoregister. */
- struct m32c_reg *raw_sb_pair = RBA (sb);
- struct m32c_reg *usp = S (RA (usp));
- struct m32c_reg *isp = S (RA (isp));
- struct m32c_reg *intb = S (RC (intb));
- struct m32c_reg *pc = G (RC (pc));
- struct m32c_reg *flg = G (R16U (flg));
- if (mach == bfd_mach_m32c)
- {
- struct m32c_reg *svf = S (R16U (svf));
- struct m32c_reg *svp = S (RC (svp));
- struct m32c_reg *vct = S (RC (vct));
- struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
- struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
- struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
- struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
- struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
- struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
- }
- num_raw_regs = tdep->num_regs;
- r0 = G (CB (r0, raw_r0_pair));
- r1 = G (CB (r1, raw_r1_pair));
- r2 = G (CB (r2, raw_r2_pair));
- r3 = G (CB (r3, raw_r3_pair));
- a0 = G (CB (a0, raw_a0_pair));
- a1 = G (CB (a1, raw_a1_pair));
- fb = G (CB (fb, raw_fb_pair));
- /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
- Specify custom read/write functions that do the right thing. */
- sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
- m32c_sb_read, m32c_sb_write,
- raw_sb_pair, raw_sb_pair + 1, 0));
- /* The current sp is either usp or isp, depending on the value of
- the FLG register's U bit. */
- sp = G (add_reg (arch, "sp", usp->type, 0,
- m32c_banked_read, m32c_banked_write,
- isp, usp, FLAGBIT_U));
- r0hl = CHL (r0, tdep->int8);
- r1hl = CHL (r1, tdep->int8);
- r2hl = CHL (r2, tdep->int8);
- r3hl = CHL (r3, tdep->int8);
- intbhl = CHL (intb, tdep->int16);
- r2r0 = CCAT (r2, r0, tdep->int32);
- r3r1 = CCAT (r3, r1, tdep->int32);
- r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
- r3r2r1r0
- = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
- m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
- if (mach == bfd_mach_m16c)
- a1a0 = CCAT (a1, a0, tdep->int32);
- else
- a1a0 = NULL;
- num_cooked_regs = tdep->num_regs - num_raw_regs;
- tdep->pc = pc;
- tdep->flg = flg;
- tdep->r0 = r0;
- tdep->r1 = r1;
- tdep->r2 = r2;
- tdep->r3 = r3;
- tdep->r2r0 = r2r0;
- tdep->r3r2r1r0 = r3r2r1r0;
- tdep->r3r1r2r0 = r3r1r2r0;
- tdep->a0 = a0;
- tdep->a1 = a1;
- tdep->sb = sb;
- tdep->fb = fb;
- tdep->sp = sp;
- /* Set up the DWARF register table. */
- memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
- set_dwarf_regnum (r0hl + 1, 0x01);
- set_dwarf_regnum (r0hl + 0, 0x02);
- set_dwarf_regnum (r1hl + 1, 0x03);
- set_dwarf_regnum (r1hl + 0, 0x04);
- set_dwarf_regnum (r0, 0x05);
- set_dwarf_regnum (r1, 0x06);
- set_dwarf_regnum (r2, 0x07);
- set_dwarf_regnum (r3, 0x08);
- set_dwarf_regnum (a0, 0x09);
- set_dwarf_regnum (a1, 0x0a);
- set_dwarf_regnum (fb, 0x0b);
- set_dwarf_regnum (sp, 0x0c);
- set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
- set_dwarf_regnum (sb, 0x13);
- set_dwarf_regnum (r2r0, 0x15);
- set_dwarf_regnum (r3r1, 0x16);
- if (a1a0)
- set_dwarf_regnum (a1a0, 0x17);
- /* Enumerate the save/restore register group.
- The regcache_save and regcache_restore functions apply their read
- function to each register in this group.
- Since frame_pop supplies frame_unwind_register as its read
- function, the registers meaningful to the Dwarf unwinder need to
- be in this group.
- On the other hand, when we make inferior calls, save_inferior_status
- and restore_inferior_status use them to preserve the current register
- values across the inferior call. For this, you'd kind of like to
- preserve all the raw registers, to protect the interrupted code from
- any sort of bank switching the callee might have done. But we handle
- those cases so badly anyway --- for example, it matters whether we
- restore FLG before or after we restore the general-purpose registers,
- but there's no way to express that --- that it isn't worth worrying
- about.
- We omit control registers like inthl: if you call a function that
- changes those, it's probably because you wanted that change to be
- visible to the interrupted code. */
- mark_save_restore (r0);
- mark_save_restore (r1);
- mark_save_restore (r2);
- mark_save_restore (r3);
- mark_save_restore (a0);
- mark_save_restore (a1);
- mark_save_restore (sb);
- mark_save_restore (fb);
- mark_save_restore (sp);
- mark_save_restore (pc);
- mark_save_restore (flg);
- set_gdbarch_num_regs (arch, num_raw_regs);
- set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
- set_gdbarch_pc_regnum (arch, pc->num);
- set_gdbarch_sp_regnum (arch, sp->num);
- set_gdbarch_register_name (arch, m32c_register_name);
- set_gdbarch_register_type (arch, m32c_register_type);
- set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
- set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
- set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
- set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
- set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
- set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
- reggroup_add (arch, general_reggroup);
- reggroup_add (arch, all_reggroup);
- reggroup_add (arch, save_reggroup);
- reggroup_add (arch, restore_reggroup);
- reggroup_add (arch, system_reggroup);
- reggroup_add (arch, m32c_dma_reggroup);
- }
- /* Breakpoints. */
- static const unsigned char *
- m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
- {
- static unsigned char break_insn[] = { 0x00 }; /* brk */
- *len = sizeof (break_insn);
- return break_insn;
- }
- /* Prologue analysis. */
- struct m32c_prologue
- {
- /* For consistency with the DWARF 2 .debug_frame info generated by
- GCC, a frame's CFA is the address immediately after the saved
- return address. */
- /* The architecture for which we generated this prologue info. */
- struct gdbarch *arch;
- enum {
- /* This function uses a frame pointer. */
- prologue_with_frame_ptr,
- /* This function has no frame pointer. */
- prologue_sans_frame_ptr,
- /* This function sets up the stack, so its frame is the first
- frame on the stack. */
- prologue_first_frame
- } kind;
- /* If KIND is prologue_with_frame_ptr, this is the offset from the
- CFA to where the frame pointer points. This is always zero or
- negative. */
- LONGEST frame_ptr_offset;
- /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
- the stack pointer --- always zero or negative.
- Calling this a "size" is a bit misleading, but given that the
- stack grows downwards, using offsets for everything keeps one
- from going completely sign-crazy: you never change anything's
- sign for an ADD instruction; always change the second operand's
- sign for a SUB instruction; and everything takes care of
- itself.
- Functions that use alloca don't have a constant frame size. But
- they always have frame pointers, so we must use that to find the
- CFA (and perhaps to unwind the stack pointer). */
- LONGEST frame_size;
- /* The address of the first instruction at which the frame has been
- set up and the arguments are where the debug info says they are
- --- as best as we can tell. */
- CORE_ADDR prologue_end;
- /* reg_offset[R] is the offset from the CFA at which register R is
- saved, or 1 if register R has not been saved. (Real values are
- always zero or negative.) */
- LONGEST reg_offset[M32C_MAX_NUM_REGS];
- };
- /* The longest I've seen, anyway. */
- #define M32C_MAX_INSN_LEN (9)
- /* Processor state, for the prologue analyzer. */
- struct m32c_pv_state
- {
- struct gdbarch *arch;
- pv_t r0, r1, r2, r3;
- pv_t a0, a1;
- pv_t sb, fb, sp;
- pv_t pc;
- struct pv_area *stack;
- /* Bytes from the current PC, the address they were read from,
- and the address of the next unconsumed byte. */
- gdb_byte insn[M32C_MAX_INSN_LEN];
- CORE_ADDR scan_pc, next_addr;
- };
- /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
- all went well, or non-zero if simulating the action would trash our
- state. */
- static int
- m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
- {
- if (pv_area_store_would_trash (state->stack, state->sp))
- return 1;
- state->sp = pv_add_constant (state->sp, -size);
- pv_area_store (state->stack, state->sp, size, value);
- return 0;
- }
- /* A source or destination location for an m16c or m32c
- instruction. */
- struct srcdest
- {
- /* If srcdest_reg, the location is a register pointed to by REG.
- If srcdest_partial_reg, the location is part of a register pointed
- to by REG. We don't try to handle this too well.
- If srcdest_mem, the location is memory whose address is ADDR. */
- enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
- pv_t *reg, addr;
- };
- /* Return the SIZE-byte value at LOC in STATE. */
- static pv_t
- m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
- {
- if (loc.kind == srcdest_mem)
- return pv_area_fetch (state->stack, loc.addr, size);
- else if (loc.kind == srcdest_partial_reg)
- return pv_unknown ();
- else
- return *loc.reg;
- }
- /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
- all went well, or non-zero if simulating the store would trash our
- state. */
- static int
- m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
- pv_t value, int size)
- {
- if (loc.kind == srcdest_mem)
- {
- if (pv_area_store_would_trash (state->stack, loc.addr))
- return 1;
- pv_area_store (state->stack, loc.addr, size, value);
- }
- else if (loc.kind == srcdest_partial_reg)
- *loc.reg = pv_unknown ();
- else
- *loc.reg = value;
- return 0;
- }
- static int
- m32c_sign_ext (int v, int bits)
- {
- int mask = 1 << (bits - 1);
- return (v ^ mask) - mask;
- }
- static unsigned int
- m32c_next_byte (struct m32c_pv_state *st)
- {
- gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
- return st->insn[st->next_addr++ - st->scan_pc];
- }
- static int
- m32c_udisp8 (struct m32c_pv_state *st)
- {
- return m32c_next_byte (st);
- }
- static int
- m32c_sdisp8 (struct m32c_pv_state *st)
- {
- return m32c_sign_ext (m32c_next_byte (st), 8);
- }
- static int
- m32c_udisp16 (struct m32c_pv_state *st)
- {
- int low = m32c_next_byte (st);
- int high = m32c_next_byte (st);
- return low + (high << 8);
- }
- static int
- m32c_sdisp16 (struct m32c_pv_state *st)
- {
- int low = m32c_next_byte (st);
- int high = m32c_next_byte (st);
- return m32c_sign_ext (low + (high << 8), 16);
- }
- static int
- m32c_udisp24 (struct m32c_pv_state *st)
- {
- int low = m32c_next_byte (st);
- int mid = m32c_next_byte (st);
- int high = m32c_next_byte (st);
- return low + (mid << 8) + (high << 16);
- }
- /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
- static int
- m32c_get_src23 (unsigned char *i)
- {
- return (((i[0] & 0x70) >> 2)
- | ((i[1] & 0x30) >> 4));
- }
- /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
- static int
- m32c_get_dest23 (unsigned char *i)
- {
- return (((i[0] & 0x0e) << 1)
- | ((i[1] & 0xc0) >> 6));
- }
- static struct srcdest
- m32c_decode_srcdest4 (struct m32c_pv_state *st,
- int code, int size)
- {
- struct srcdest sd;
- if (code < 6)
- sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
- else
- sd.kind = srcdest_mem;
- sd.addr = pv_unknown ();
- sd.reg = 0;
- switch (code)
- {
- case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
- case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
- case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
- case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
- case 0x4: sd.reg = &st->a0; break;
- case 0x5: sd.reg = &st->a1; break;
- case 0x6: sd.addr = st->a0; break;
- case 0x7: sd.addr = st->a1; break;
- case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
- case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
- case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
- case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
- case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
- case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
- case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
- case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
- default:
- gdb_assert_not_reached ("unexpected srcdest4");
- }
- return sd;
- }
- static struct srcdest
- m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
- {
- struct srcdest sd;
- sd.addr = pv_unknown ();
- sd.reg = 0;
- switch (code)
- {
- case 0x12:
- case 0x13:
- case 0x10:
- case 0x11:
- sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
- break;
- case 0x02:
- case 0x03:
- sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
- break;
- default:
- sd.kind = srcdest_mem;
- break;
- }
- switch (code)
- {
- case 0x12: sd.reg = &st->r0; break;
- case 0x13: sd.reg = &st->r1; break;
- case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
- case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
- case 0x02: sd.reg = &st->a0; break;
- case 0x03: sd.reg = &st->a1; break;
- case 0x00: sd.addr = st->a0; break;
- case 0x01: sd.addr = st->a1; break;
- case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
- case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
- case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
- case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
- case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
- case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
- case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
- case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
- case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
- case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
- case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
- case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
- default:
- gdb_assert_not_reached ("unexpected sd23");
- }
- if (ind)
- {
- sd.addr = m32c_srcdest_fetch (st, sd, 4);
- sd.kind = srcdest_mem;
- }
- return sd;
- }
- /* The r16c and r32c machines have instructions with similar
- semantics, but completely different machine language encodings. So
- we break out the semantics into their own functions, and leave
- machine-specific decoding in m32c_analyze_prologue.
- The following functions all expect their arguments already decoded,
- and they all return zero if analysis should continue past this
- instruction, or non-zero if analysis should stop. */
- /* Simulate an 'enter SIZE' instruction in STATE. */
- static int
- m32c_pv_enter (struct m32c_pv_state *state, int size)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
- /* If simulating this store would require us to forget
- everything we know about the stack frame in the name of
- accuracy, it would be better to just quit now. */
- if (pv_area_store_would_trash (state->stack, state->sp))
- return 1;
- if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
- return 1;
- state->fb = state->sp;
- state->sp = pv_add_constant (state->sp, -size);
- return 0;
- }
- static int
- m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
- int bit, int src, int size)
- {
- if (bit & src)
- {
- if (m32c_pv_push (state, reg, size))
- return 1;
- }
- return 0;
- }
- /* Simulate a 'pushm SRC' instruction in STATE. */
- static int
- m32c_pv_pushm (struct m32c_pv_state *state, int src)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
- /* The bits in SRC indicating which registers to save are:
- r0 r1 r2 r3 a0 a1 sb fb */
- return
- ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
- || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
- || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
- || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
- || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
- || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
- || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
- || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
- }
- /* Return non-zero if VALUE is the first incoming argument register. */
- static int
- m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
- return (value.kind == pvk_register
- && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
- ? (value.reg == tdep->r1->num)
- : (value.reg == tdep->r0->num))
- && value.k == 0);
- }
- /* Return non-zero if VALUE is an incoming argument register. */
- static int
- m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
- return (value.kind == pvk_register
- && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
- ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
- : (value.reg == tdep->r0->num))
- && value.k == 0);
- }
- /* Return non-zero if a store of VALUE to LOC is probably spilling an
- argument register to its stack slot in STATE. Such instructions
- should be included in the prologue, if possible.
- The store is a spill if:
- - the value being stored is the original value of an argument register;
- - the value has not already been stored somewhere in STACK; and
- - LOC is a stack slot (e.g., a memory location whose address is
- relative to the original value of the SP). */
- static int
- m32c_is_arg_spill (struct m32c_pv_state *st,
- struct srcdest loc,
- pv_t value)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
- return (m32c_is_arg_reg (st, value)
- && loc.kind == srcdest_mem
- && pv_is_register (loc.addr, tdep->sp->num)
- && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
- }
- /* Return non-zero if a store of VALUE to LOC is probably
- copying the struct return address into an address register
- for immediate use. This is basically a "spill" into the
- address register, instead of onto the stack.
- The prerequisites are:
- - value being stored is original value of the FIRST arg register;
- - value has not already been stored on stack; and
- - LOC is an address register (a0 or a1). */
- static int
- m32c_is_struct_return (struct m32c_pv_state *st,
- struct srcdest loc,
- pv_t value)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
- return (m32c_is_1st_arg_reg (st, value)
- && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
- && loc.kind == srcdest_reg
- && (pv_is_register (*loc.reg, tdep->a0->num)
- || pv_is_register (*loc.reg, tdep->a1->num)));
- }
- /* Return non-zero if a 'pushm' saving the registers indicated by SRC
- was a register save:
- - all the named registers should have their original values, and
- - the stack pointer should be at a constant offset from the
- original stack pointer. */
- static int
- m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
- /* The bits in SRC indicating which registers to save are:
- r0 r1 r2 r3 a0 a1 sb fb */
- return
- (pv_is_register (st->sp, tdep->sp->num)
- && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
- && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
- && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
- && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
- && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
- && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
- && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
- && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
- }
- /* Function for finding saved registers in a 'struct pv_area'; we pass
- this to pv_area_scan.
- If VALUE is a saved register, ADDR says it was saved at a constant
- offset from the frame base, and SIZE indicates that the whole
- register was saved, record its offset in RESULT_UNTYPED. */
- static void
- check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
- {
- struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
- struct gdbarch *arch = prologue->arch;
- struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
- /* Is this the unchanged value of some register being saved on the
- stack? */
- if (value.kind == pvk_register
- && value.k == 0
- && pv_is_register (addr, tdep->sp->num))
- {
- /* Some registers require special handling: they're saved as a
- larger value than the register itself. */
- CORE_ADDR saved_size = register_size (arch, value.reg);
- if (value.reg == tdep->pc->num)
- saved_size = tdep->ret_addr_bytes;
- else if (register_type (arch, value.reg)
- == tdep->data_addr_reg_type)
- saved_size = tdep->push_addr_bytes;
- if (size == saved_size)
- {
- /* Find which end of the saved value corresponds to our
- register. */
- if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
- prologue->reg_offset[value.reg]
- = (addr.k + saved_size - register_size (arch, value.reg));
- else
- prologue->reg_offset[value.reg] = addr.k;
- }
- }
- }
- /* Analyze the function prologue for ARCH at START, going no further
- than LIMIT, and place a description of what we found in
- PROLOGUE. */
- static void
- m32c_analyze_prologue (struct gdbarch *arch,
- CORE_ADDR start, CORE_ADDR limit,
- struct m32c_prologue *prologue)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
- unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
- CORE_ADDR after_last_frame_related_insn;
- struct cleanup *back_to;
- struct m32c_pv_state st;
- st.arch = arch;
- st.r0 = pv_register (tdep->r0->num, 0);
- st.r1 = pv_register (tdep->r1->num, 0);
- st.r2 = pv_register (tdep->r2->num, 0);
- st.r3 = pv_register (tdep->r3->num, 0);
- st.a0 = pv_register (tdep->a0->num, 0);
- st.a1 = pv_register (tdep->a1->num, 0);
- st.sb = pv_register (tdep->sb->num, 0);
- st.fb = pv_register (tdep->fb->num, 0);
- st.sp = pv_register (tdep->sp->num, 0);
- st.pc = pv_register (tdep->pc->num, 0);
- st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
- back_to = make_cleanup_free_pv_area (st.stack);
- /* Record that the call instruction has saved the return address on
- the stack. */
- m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
- memset (prologue, 0, sizeof (*prologue));
- prologue->arch = arch;
- {
- int i;
- for (i = 0; i < M32C_MAX_NUM_REGS; i++)
- prologue->reg_offset[i] = 1;
- }
- st.scan_pc = after_last_frame_related_insn = start;
- while (st.scan_pc < limit)
- {
- pv_t pre_insn_fb = st.fb;
- pv_t pre_insn_sp = st.sp;
- /* In theory we could get in trouble by trying to read ahead
- here, when we only know we're expecting one byte. In
- practice I doubt anyone will care, and it makes the rest of
- the code easier. */
- if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
- /* If we can't fetch the instruction from memory, stop here
- and hope for the best. */
- break;
- st.next_addr = st.scan_pc;
- /* The assembly instructions are written as they appear in the
- section of the processor manuals that describe the
- instruction encodings.
- When a single assembly language instruction has several
- different machine-language encodings, the manual
- distinguishes them by a number in parens, before the
- mnemonic. Those numbers are included, as well.
- The srcdest decoding instructions have the same names as the
- analogous functions in the simulator. */
- if (mach == bfd_mach_m16c)
- {
- /* (1) ENTER #imm8 */
- if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
- {
- if (m32c_pv_enter (&st, st.insn[2]))
- break;
- st.next_addr += 3;
- }
- /* (1) PUSHM src */
- else if (st.insn[0] == 0xec)
- {
- int src = st.insn[1];
- if (m32c_pv_pushm (&st, src))
- break;
- st.next_addr += 2;
- if (m32c_pushm_is_reg_save (&st, src))
- after_last_frame_related_insn = st.next_addr;
- }
- /* (6) MOV.size:G src, dest */
- else if ((st.insn[0] & 0xfe) == 0x72)
- {
- int size = (st.insn[0] & 0x01) ? 2 : 1;
- struct srcdest src;
- struct srcdest dest;
- pv_t src_value;
- st.next_addr += 2;
- src
- = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
- dest
- = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
- src_value = m32c_srcdest_fetch (&st, src, size);
- if (m32c_is_arg_spill (&st, dest, src_value))
- after_last_frame_related_insn = st.next_addr;
- else if (m32c_is_struct_return (&st, dest, src_value))
- after_last_frame_related_insn = st.next_addr;
- if (m32c_srcdest_store (&st, dest, src_value, size))
- break;
- }
- /* (1) LDC #IMM16, sp */
- else if (st.insn[0] == 0xeb
- && st.insn[1] == 0x50)
- {
- st.next_addr += 2;
- st.sp = pv_constant (m32c_udisp16 (&st));
- }
- else
- /* We've hit some instruction we don't know how to simulate.
- Strictly speaking, we should set every value we're
- tracking to "unknown". But we'll be optimistic, assume
- that we have enough information already, and stop
- analysis here. */
- break;
- }
- else
- {
- int src_indirect = 0;
- int dest_indirect = 0;
- int i = 0;
- gdb_assert (mach == bfd_mach_m32c);
- /* Check for prefix bytes indicating indirect addressing. */
- if (st.insn[0] == 0x41)
- {
- src_indirect = 1;
- i++;
- }
- else if (st.insn[0] == 0x09)
- {
- dest_indirect = 1;
- i++;
- }
- else if (st.insn[0] == 0x49)
- {
- src_indirect = dest_indirect = 1;
- i++;
- }
- /* (1) ENTER #imm8 */
- if (st.insn[i] == 0xec)
- {
- if (m32c_pv_enter (&st, st.insn[i + 1]))
- break;
- st.next_addr += 2;
- }
- /* (1) PUSHM src */
- else if (st.insn[i] == 0x8f)
- {
- int src = st.insn[i + 1];
- if (m32c_pv_pushm (&st, src))
- break;
- st.next_addr += 2;
- if (m32c_pushm_is_reg_save (&st, src))
- after_last_frame_related_insn = st.next_addr;
- }
- /* (7) MOV.size:G src, dest */
- else if ((st.insn[i] & 0x80) == 0x80
- && (st.insn[i + 1] & 0x0f) == 0x0b
- && m32c_get_src23 (&st.insn[i]) < 20
- && m32c_get_dest23 (&st.insn[i]) < 20)
- {
- struct srcdest src;
- struct srcdest dest;
- pv_t src_value;
- int bw = st.insn[i] & 0x01;
- int size = bw ? 2 : 1;
- st.next_addr += 2;
- src
- = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
- size, src_indirect);
- dest
- = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
- size, dest_indirect);
- src_value = m32c_srcdest_fetch (&st, src, size);
- if (m32c_is_arg_spill (&st, dest, src_value))
- after_last_frame_related_insn = st.next_addr;
- if (m32c_srcdest_store (&st, dest, src_value, size))
- break;
- }
- /* (2) LDC #IMM24, sp */
- else if (st.insn[i] == 0xd5
- && st.insn[i + 1] == 0x29)
- {
- st.next_addr += 2;
- st.sp = pv_constant (m32c_udisp24 (&st));
- }
- else
- /* We've hit some instruction we don't know how to simulate.
- Strictly speaking, we should set every value we're
- tracking to "unknown". But we'll be optimistic, assume
- that we have enough information already, and stop
- analysis here. */
- break;
- }
- /* If this instruction changed the FB or decreased the SP (i.e.,
- allocated more stack space), then this may be a good place to
- declare the prologue finished. However, there are some
- exceptions:
- - If the instruction just changed the FB back to its original
- value, then that's probably a restore instruction. The
- prologue should definitely end before that.
- - If the instruction increased the value of the SP (that is,
- shrunk the frame), then it's probably part of a frame
- teardown sequence, and the prologue should end before
- that. */
- if (! pv_is_identical (st.fb, pre_insn_fb))
- {
- if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
- after_last_frame_related_insn = st.next_addr;
- }
- else if (! pv_is_identical (st.sp, pre_insn_sp))
- {
- /* The comparison of the constants looks odd, there, because
- .k is unsigned. All it really means is that the SP is
- lower than it was before the instruction. */
- if ( pv_is_register (pre_insn_sp, tdep->sp->num)
- && pv_is_register (st.sp, tdep->sp->num)
- && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
- after_last_frame_related_insn = st.next_addr;
- }
- st.scan_pc = st.next_addr;
- }
- /* Did we load a constant value into the stack pointer? */
- if (pv_is_constant (st.sp))
- prologue->kind = prologue_first_frame;
- /* Alternatively, did we initialize the frame pointer? Remember
- that the CFA is the address after the return address. */
- if (pv_is_register (st.fb, tdep->sp->num))
- {
- prologue->kind = prologue_with_frame_ptr;
- prologue->frame_ptr_offset = st.fb.k;
- }
- /* Is the frame size a known constant? Remember that frame_size is
- actually the offset from the CFA to the SP (i.e., a negative
- value). */
- else if (pv_is_register (st.sp, tdep->sp->num))
- {
- prologue->kind = prologue_sans_frame_ptr;
- prologue->frame_size = st.sp.k;
- }
- /* We haven't been able to make sense of this function's frame. Treat
- it as the first frame. */
- else
- prologue->kind = prologue_first_frame;
- /* Record where all the registers were saved. */
- pv_area_scan (st.stack, check_for_saved, (void *) prologue);
- prologue->prologue_end = after_last_frame_related_insn;
- do_cleanups (back_to);
- }
- static CORE_ADDR
- m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
- {
- const char *name;
- CORE_ADDR func_addr, func_end, sal_end;
- struct m32c_prologue p;
- /* Try to find the extent of the function that contains IP. */
- if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
- return ip;
- /* Find end by prologue analysis. */
- m32c_analyze_prologue (gdbarch, ip, func_end, &p);
- /* Find end by line info. */
- sal_end = skip_prologue_using_sal (gdbarch, ip);
- /* Return whichever is lower. */
- if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
- return sal_end;
- else
- return p.prologue_end;
- }
- /* Stack unwinding. */
- static struct m32c_prologue *
- m32c_analyze_frame_prologue (struct frame_info *this_frame,
- void **this_prologue_cache)
- {
- if (! *this_prologue_cache)
- {
- CORE_ADDR func_start = get_frame_func (this_frame);
- CORE_ADDR stop_addr = get_frame_pc (this_frame);
- /* If we couldn't find any function containing the PC, then
- just initialize the prologue cache, but don't do anything. */
- if (! func_start)
- stop_addr = func_start;
- *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
- m32c_analyze_prologue (get_frame_arch (this_frame),
- func_start, stop_addr, *this_prologue_cache);
- }
- return *this_prologue_cache;
- }
- static CORE_ADDR
- m32c_frame_base (struct frame_info *this_frame,
- void **this_prologue_cache)
- {
- struct m32c_prologue *p
- = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
- struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
- /* In functions that use alloca, the distance between the stack
- pointer and the frame base varies dynamically, so we can't use
- the SP plus static information like prologue analysis to find the
- frame base. However, such functions must have a frame pointer,
- to be able to restore the SP on exit. So whenever we do have a
- frame pointer, use that to find the base. */
- switch (p->kind)
- {
- case prologue_with_frame_ptr:
- {
- CORE_ADDR fb
- = get_frame_register_unsigned (this_frame, tdep->fb->num);
- return fb - p->frame_ptr_offset;
- }
- case prologue_sans_frame_ptr:
- {
- CORE_ADDR sp
- = get_frame_register_unsigned (this_frame, tdep->sp->num);
- return sp - p->frame_size;
- }
- case prologue_first_frame:
- return 0;
- default:
- gdb_assert_not_reached ("unexpected prologue kind");
- }
- }
- static void
- m32c_this_id (struct frame_info *this_frame,
- void **this_prologue_cache,
- struct frame_id *this_id)
- {
- CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
- if (base)
- *this_id = frame_id_build (base, get_frame_func (this_frame));
- /* Otherwise, leave it unset, and that will terminate the backtrace. */
- }
- static struct value *
- m32c_prev_register (struct frame_info *this_frame,
- void **this_prologue_cache, int regnum)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
- struct m32c_prologue *p
- = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
- CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
- int reg_size = register_size (get_frame_arch (this_frame), regnum);
- if (regnum == tdep->sp->num)
- return frame_unwind_got_constant (this_frame, regnum, frame_base);
- /* If prologue analysis says we saved this register somewhere,
- return a description of the stack slot holding it. */
- if (p->reg_offset[regnum] != 1)
- return frame_unwind_got_memory (this_frame, regnum,
- frame_base + p->reg_offset[regnum]);
- /* Otherwise, presume we haven't changed the value of this
- register, and get it from the next frame. */
- return frame_unwind_got_register (this_frame, regnum, regnum);
- }
- static const struct frame_unwind m32c_unwind = {
- NORMAL_FRAME,
- default_frame_unwind_stop_reason,
- m32c_this_id,
- m32c_prev_register,
- NULL,
- default_frame_sniffer
- };
- static CORE_ADDR
- m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
- return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
- }
- static CORE_ADDR
- m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
- return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
- }
- /* Inferior calls. */
- /* The calling conventions, according to GCC:
- r8c, m16c
- ---------
- First arg may be passed in r1l or r1 if it (1) fits (QImode or
- HImode), (2) is named, and (3) is an integer or pointer type (no
- structs, floats, etc). Otherwise, it's passed on the stack.
- Second arg may be passed in r2, same restrictions (but not QImode),
- even if the first arg is passed on the stack.
- Third and further args are passed on the stack. No padding is
- used, stack "alignment" is 8 bits.
- m32cm, m32c
- -----------
- First arg may be passed in r0l or r0, same restrictions as above.
- Second and further args are passed on the stack. Padding is used
- after QImode parameters (i.e. lower-addressed byte is the value,
- higher-addressed byte is the padding), stack "alignment" is 16
- bits. */
- /* Return true if TYPE is a type that can be passed in registers. (We
- ignore the size, and pay attention only to the type code;
- acceptable sizes depends on which register is being considered to
- hold it.) */
- static int
- m32c_reg_arg_type (struct type *type)
- {
- enum type_code code = TYPE_CODE (type);
- return (code == TYPE_CODE_INT
- || code == TYPE_CODE_ENUM
- || code == TYPE_CODE_PTR
- || code == TYPE_CODE_REF
- || code == TYPE_CODE_BOOL
- || code == TYPE_CODE_CHAR);
- }
- static CORE_ADDR
- m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
- struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
- struct value **args, CORE_ADDR sp, int struct_return,
- CORE_ADDR struct_addr)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
- CORE_ADDR cfa;
- int i;
- /* The number of arguments given in this function's prototype, or
- zero if it has a non-prototyped function type. The m32c ABI
- passes arguments mentioned in the prototype differently from
- those in the ellipsis of a varargs function, or from those passed
- to a non-prototyped function. */
- int num_prototyped_args = 0;
- {
- struct type *func_type = value_type (function);
- /* Dereference function pointer types. */
- if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
- func_type = TYPE_TARGET_TYPE (func_type);
- gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
- TYPE_CODE (func_type) == TYPE_CODE_METHOD);
- #if 0
- /* The ABI description in gcc/config/m32c/m32c.abi says that
- we need to handle prototyped and non-prototyped functions
- separately, but the code in GCC doesn't actually do so. */
- if (TYPE_PROTOTYPED (func_type))
- #endif
- num_prototyped_args = TYPE_NFIELDS (func_type);
- }
- /* First, if the function returns an aggregate by value, push a
- pointer to a buffer for it. This doesn't affect the way
- subsequent arguments are allocated to registers. */
- if (struct_return)
- {
- int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
- sp -= ptr_len;
- write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
- }
- /* Push the arguments. */
- for (i = nargs - 1; i >= 0; i--)
- {
- struct value *arg = args[i];
- const gdb_byte *arg_bits = value_contents (arg);
- struct type *arg_type = value_type (arg);
- ULONGEST arg_size = TYPE_LENGTH (arg_type);
- /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
- if (i == 0
- && arg_size <= 2
- && i < num_prototyped_args
- && m32c_reg_arg_type (arg_type))
- {
- /* Extract and re-store as an integer as a terse way to make
- sure it ends up in the least significant end of r1. (GDB
- should avoid assuming endianness, even on uni-endian
- processors.) */
- ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
- byte_order);
- struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
- regcache_cooked_write_unsigned (regcache, reg->num, u);
- }
- /* Can it go in r2? */
- else if (mach == bfd_mach_m16c
- && i == 1
- && arg_size == 2
- && i < num_prototyped_args
- && m32c_reg_arg_type (arg_type))
- regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
- /* Everything else goes on the stack. */
- else
- {
- sp -= arg_size;
- /* Align the stack. */
- if (mach == bfd_mach_m32c)
- sp &= ~1;
- write_memory (sp, arg_bits, arg_size);
- }
- }
- /* This is the CFA we use to identify the dummy frame. */
- cfa = sp;
- /* Push the return address. */
- sp -= tdep->ret_addr_bytes;
- write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
- bp_addr);
- /* Update the stack pointer. */
- regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
- /* We need to borrow an odd trick from the i386 target here.
- The value we return from this function gets used as the stack
- address (the CFA) for the dummy frame's ID. The obvious thing is
- to return the new TOS. However, that points at the return
- address, saved on the stack, which is inconsistent with the CFA's
- described by GCC's DWARF 2 .debug_frame information: DWARF 2
- .debug_frame info uses the address immediately after the saved
- return address. So you end up with a dummy frame whose CFA
- points at the return address, but the frame for the function
- being called has a CFA pointing after the return address: the
- younger CFA is *greater than* the older CFA. The sanity checks
- in frame.c don't like that.
- So we try to be consistent with the CFA's used by DWARF 2.
- Having a dummy frame and a real frame with the *same* CFA is
- tolerable. */
- return cfa;
- }
- static struct frame_id
- m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
- {
- /* This needs to return a frame ID whose PC is the return address
- passed to m32c_push_dummy_call, and whose stack_addr is the SP
- m32c_push_dummy_call returned.
- m32c_unwind_sp gives us the CFA, which is the value the SP had
- before the return address was pushed. */
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
- return frame_id_build (sp, get_frame_pc (this_frame));
- }
- /* Return values. */
- /* Return value conventions, according to GCC:
- r8c, m16c
- ---------
- QImode in r0l
- HImode in r0
- SImode in r2r0
- near pointer in r0
- far pointer in r2r0
- Aggregate values (regardless of size) are returned by pushing a
- pointer to a temporary area on the stack after the args are pushed.
- The function fills in this area with the value. Note that this
- pointer on the stack does not affect how register arguments, if any,
- are configured.
- m32cm, m32c
- -----------
- Same. */
- /* Return non-zero if values of type TYPE are returned by storing them
- in a buffer whose address is passed on the stack, ahead of the
- other arguments. */
- static int
- m32c_return_by_passed_buf (struct type *type)
- {
- enum type_code code = TYPE_CODE (type);
- return (code == TYPE_CODE_STRUCT
- || code == TYPE_CODE_UNION);
- }
- static enum return_value_convention
- m32c_return_value (struct gdbarch *gdbarch,
- struct value *function,
- struct type *valtype,
- struct regcache *regcache,
- gdb_byte *readbuf,
- const gdb_byte *writebuf)
- {
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- enum return_value_convention conv;
- ULONGEST valtype_len = TYPE_LENGTH (valtype);
- if (m32c_return_by_passed_buf (valtype))
- conv = RETURN_VALUE_STRUCT_CONVENTION;
- else
- conv = RETURN_VALUE_REGISTER_CONVENTION;
- if (readbuf)
- {
- /* We should never be called to find values being returned by
- RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
- unless we made the call ourselves. */
- gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
- gdb_assert (valtype_len <= 8);
- /* Anything that fits in r0 is returned there. */
- if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
- {
- ULONGEST u;
- regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
- store_unsigned_integer (readbuf, valtype_len, byte_order, u);
- }
- else
- {
- /* Everything else is passed in mem0, using as many bytes as
- needed. This is not what the Renesas tools do, but it's
- what GCC does at the moment. */
- struct bound_minimal_symbol mem0
- = lookup_minimal_symbol ("mem0", NULL, NULL);
- if (! mem0.minsym)
- error (_("The return value is stored in memory at 'mem0', "
- "but GDB cannot find\n"
- "its address."));
- read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
- }
- }
- if (writebuf)
- {
- /* We should never be called to store values to be returned
- using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
- finding the buffer, unless we made the call ourselves. */
- gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
- gdb_assert (valtype_len <= 8);
- /* Anything that fits in r0 is returned there. */
- if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
- {
- ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
- byte_order);
- regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
- }
- else
- {
- /* Everything else is passed in mem0, using as many bytes as
- needed. This is not what the Renesas tools do, but it's
- what GCC does at the moment. */
- struct bound_minimal_symbol mem0
- = lookup_minimal_symbol ("mem0", NULL, NULL);
- if (! mem0.minsym)
- error (_("The return value is stored in memory at 'mem0', "
- "but GDB cannot find\n"
- " its address."));
- write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
- }
- }
- return conv;
- }
- /* Trampolines. */
- /* The m16c and m32c use a trampoline function for indirect function
- calls. An indirect call looks like this:
- ... push arguments ...
- ... push target function address ...
- jsr.a m32c_jsri16
- The code for m32c_jsri16 looks like this:
- m32c_jsri16:
- # Save return address.
- pop.w m32c_jsri_ret
- pop.b m32c_jsri_ret+2
- # Store target function address.
- pop.w m32c_jsri_addr
- # Re-push return address.
- push.b m32c_jsri_ret+2
- push.w m32c_jsri_ret
- # Call the target function.
- jmpi.a m32c_jsri_addr
- Without further information, GDB will treat calls to m32c_jsri16
- like calls to any other function. Since m32c_jsri16 doesn't have
- debugging information, that normally means that GDB sets a step-
- resume breakpoint and lets the program continue --- which is not
- what the user wanted. (Giving the trampoline debugging info
- doesn't help: the user expects the program to stop in the function
- their program is calling, not in some trampoline code they've never
- seen before.)
- The gdbarch_skip_trampoline_code method tells GDB how to step
- through such trampoline functions transparently to the user. When
- given the address of a trampoline function's first instruction,
- gdbarch_skip_trampoline_code should return the address of the first
- instruction of the function really being called. If GDB decides it
- wants to step into that function, it will set a breakpoint there
- and silently continue to it.
- We recognize the trampoline by name, and extract the target address
- directly from the stack. This isn't great, but recognizing by its
- code sequence seems more fragile. */
- static CORE_ADDR
- m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
- {
- struct gdbarch *gdbarch = get_frame_arch (frame);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- /* It would be nicer to simply look up the addresses of known
- trampolines once, and then compare stop_pc with them. However,
- we'd need to ensure that that cached address got invalidated when
- someone loaded a new executable, and I'm not quite sure of the
- best way to do that. find_pc_partial_function does do some
- caching, so we'll see how this goes. */
- const char *name;
- CORE_ADDR start, end;
- if (find_pc_partial_function (stop_pc, &name, &start, &end))
- {
- /* Are we stopped at the beginning of the trampoline function? */
- if (strcmp (name, "m32c_jsri16") == 0
- && stop_pc == start)
- {
- /* Get the stack pointer. The return address is at the top,
- and the target function's address is just below that. We
- know it's a two-byte address, since the trampoline is
- m32c_jsri*16*. */
- CORE_ADDR sp = get_frame_sp (get_current_frame ());
- CORE_ADDR target
- = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
- 2, byte_order);
- /* What we have now is the address of a jump instruction.
- What we need is the destination of that jump.
- The opcode is 1 byte, and the destination is the next 3 bytes. */
- target = read_memory_unsigned_integer (target + 1, 3, byte_order);
- return target;
- }
- }
- return 0;
- }
- /* Address/pointer conversions. */
- /* On the m16c, there is a 24-bit address space, but only a very few
- instructions can generate addresses larger than 0xffff: jumps,
- jumps to subroutines, and the lde/std (load/store extended)
- instructions.
- Since GCC can only support one size of pointer, we can't have
- distinct 'near' and 'far' pointer types; we have to pick one size
- for everything. If we wanted to use 24-bit pointers, then GCC
- would have to use lde and ste for all memory references, which
- would be terrible for performance and code size. So the GNU
- toolchain uses 16-bit pointers for everything, and gives up the
- ability to have pointers point outside the first 64k of memory.
- However, as a special hack, we let the linker place functions at
- addresses above 0xffff, as long as it also places a trampoline in
- the low 64k for every function whose address is taken. Each
- trampoline consists of a single jmp.a instruction that jumps to the
- function's real entry point. Pointers to functions can be 16 bits
- long, even though the functions themselves are at higher addresses:
- the pointers refer to the trampolines, not the functions.
- This complicates things for GDB, however: given the address of a
- function (from debug info or linker symbols, say) which could be
- anywhere in the 24-bit address space, how can we find an
- appropriate 16-bit value to use as a pointer to it?
- If the linker has not generated a trampoline for the function,
- we're out of luck. Well, I guess we could malloc some space and
- write a jmp.a instruction to it, but I'm not going to get into that
- at the moment.
- If the linker has generated a trampoline for the function, then it
- also emitted a symbol for the trampoline: if the function's linker
- symbol is named NAME, then the function's trampoline's linker
- symbol is named NAME.plt.
- So, given a code address:
- - We try to find a linker symbol at that address.
- - If we find such a symbol named NAME, we look for a linker symbol
- named NAME.plt.
- - If we find such a symbol, we assume it is a trampoline, and use
- its address as the pointer value.
- And, given a function pointer:
- - We try to find a linker symbol at that address named NAME.plt.
- - If we find such a symbol, we look for a linker symbol named NAME.
- - If we find that, we provide that as the function's address.
- - If any of the above steps fail, we return the original address
- unchanged; it might really be a function in the low 64k.
- See? You *knew* there was a reason you wanted to be a computer
- programmer! :) */
- static void
- m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
- struct type *type, gdb_byte *buf, CORE_ADDR addr)
- {
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- enum type_code target_code;
- gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
- TYPE_CODE (type) == TYPE_CODE_REF);
- target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
- if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
- {
- const char *func_name;
- char *tramp_name;
- struct bound_minimal_symbol tramp_msym;
- /* Try to find a linker symbol at this address. */
- struct bound_minimal_symbol func_msym
- = lookup_minimal_symbol_by_pc (addr);
- if (! func_msym.minsym)
- error (_("Cannot convert code address %s to function pointer:\n"
- "couldn't find a symbol at that address, to find trampoline."),
- paddress (gdbarch, addr));
- func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
- tramp_name = xmalloc (strlen (func_name) + 5);
- strcpy (tramp_name, func_name);
- strcat (tramp_name, ".plt");
- /* Try to find a linker symbol for the trampoline. */
- tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
- /* We've either got another copy of the name now, or don't need
- the name any more. */
- xfree (tramp_name);
- if (! tramp_msym.minsym)
- {
- CORE_ADDR ptrval;
- /* No PLT entry found. Mask off the upper bits of the address
- to make a pointer. As noted in the warning to the user
- below, this value might be useful if converted back into
- an address by GDB, but will otherwise, almost certainly,
- be garbage.
- Using this masked result does seem to be useful
- in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
- PASSes. These results appear to be correct as well.
- We print a warning here so that the user can make a
- determination about whether the result is useful or not. */
- ptrval = addr & 0xffff;
- warning (_("Cannot convert code address %s to function pointer:\n"
- "couldn't find trampoline named '%s.plt'.\n"
- "Returning pointer value %s instead; this may produce\n"
- "a useful result if converted back into an address by GDB,\n"
- "but will most likely not be useful otherwise.\n"),
- paddress (gdbarch, addr), func_name,
- paddress (gdbarch, ptrval));
- addr = ptrval;
- }
- else
- {
- /* The trampoline's address is our pointer. */
- addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
- }
- }
- store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
- }
- static CORE_ADDR
- m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
- struct type *type, const gdb_byte *buf)
- {
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR ptr;
- enum type_code target_code;
- gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
- TYPE_CODE (type) == TYPE_CODE_REF);
- ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
- target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
- if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
- {
- /* See if there is a minimal symbol at that address whose name is
- "NAME.plt". */
- struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
- if (ptr_msym.minsym)
- {
- const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
- int len = strlen (ptr_msym_name);
- if (len > 4
- && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
- {
- struct bound_minimal_symbol func_msym;
- /* We have a .plt symbol; try to find the symbol for the
- corresponding function.
- Since the trampoline contains a jump instruction, we
- could also just extract the jump's target address. I
- don't see much advantage one way or the other. */
- char *func_name = xmalloc (len - 4 + 1);
- memcpy (func_name, ptr_msym_name, len - 4);
- func_name[len - 4] = '\0';
- func_msym
- = lookup_minimal_symbol (func_name, NULL, NULL);
- /* If we do have such a symbol, return its value as the
- function's true address. */
- if (func_msym.minsym)
- ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
- }
- }
- else
- {
- int aspace;
- for (aspace = 1; aspace <= 15; aspace++)
- {
- ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
- if (ptr_msym.minsym)
- ptr |= aspace << 16;
- }
- }
- }
- return ptr;
- }
- static void
- m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
- int *frame_regnum,
- LONGEST *frame_offset)
- {
- const char *name;
- CORE_ADDR func_addr, func_end;
- struct m32c_prologue p;
- struct regcache *regcache = get_current_regcache ();
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
- internal_error (__FILE__, __LINE__,
- _("No virtual frame pointer available"));
- m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
- switch (p.kind)
- {
- case prologue_with_frame_ptr:
- *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
- *frame_offset = p.frame_ptr_offset;
- break;
- case prologue_sans_frame_ptr:
- *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
- *frame_offset = p.frame_size;
- break;
- default:
- *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
- *frame_offset = 0;
- break;
- }
- /* Sanity check */
- if (*frame_regnum > gdbarch_num_regs (gdbarch))
- internal_error (__FILE__, __LINE__,
- _("No virtual frame pointer available"));
- }
- /* Initialization. */
- static struct gdbarch *
- m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
- {
- struct gdbarch *arch;
- struct gdbarch_tdep *tdep;
- unsigned long mach = info.bfd_arch_info->mach;
- /* Find a candidate among the list of architectures we've created
- already. */
- for (arches = gdbarch_list_lookup_by_info (arches, &info);
- arches != NULL;
- arches = gdbarch_list_lookup_by_info (arches->next, &info))
- return arches->gdbarch;
- tdep = xcalloc (1, sizeof (*tdep));
- arch = gdbarch_alloc (&info, tdep);
- /* Essential types. */
- make_types (arch);
- /* Address/pointer conversions. */
- if (mach == bfd_mach_m16c)
- {
- set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
- set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
- }
- /* Register set. */
- make_regs (arch);
- /* Disassembly. */
- set_gdbarch_print_insn (arch, print_insn_m32c);
- /* Breakpoints. */
- set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
- /* Prologue analysis and unwinding. */
- set_gdbarch_inner_than (arch, core_addr_lessthan);
- set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
- set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
- set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
- #if 0
- /* I'm dropping the dwarf2 sniffer because it has a few problems.
- They may be in the dwarf2 cfi code in GDB, or they may be in
- the debug info emitted by the upstream toolchain. I don't
- know which, but I do know that the prologue analyzer works better.
- MVS 04/13/06 */
- dwarf2_append_sniffers (arch);
- #endif
- frame_unwind_append_unwinder (arch, &m32c_unwind);
- /* Inferior calls. */
- set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
- set_gdbarch_return_value (arch, m32c_return_value);
- set_gdbarch_dummy_id (arch, m32c_dummy_id);
- /* Trampolines. */
- set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
- set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
- /* m32c function boundary addresses are not necessarily even.
- Therefore, the `vbit', which indicates a pointer to a virtual
- member function, is stored in the delta field, rather than as
- the low bit of a function pointer address.
- In order to verify this, see the definition of
- TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
- definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
- set_gdbarch_vbit_in_delta (arch, 1);
- return arch;
- }
- /* Provide a prototype to silence -Wmissing-prototypes. */
- extern initialize_file_ftype _initialize_m32c_tdep;
- void
- _initialize_m32c_tdep (void)
- {
- register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
- m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
- }