gdb/prologue-value.h - gdb

Data types defined

Macros defined

Source code

  1. /* Interface to prologue value handling for GDB.
  2.    Copyright (C) 2003-2015 Free Software Foundation, Inc.

  3.    This file is part of GDB.

  4.    This program is free software; you can redistribute it and/or modify
  5.    it under the terms of the GNU General Public License as published by
  6.    the Free Software Foundation; either version 3 of the License, or
  7.    (at your option) any later version.

  8.    This program is distributed in the hope that it will be useful,
  9.    but WITHOUT ANY WARRANTY; without even the implied warranty of
  10.    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11.    GNU General Public License for more details.

  12.    You should have received a copy of the GNU General Public License
  13.    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

  14. #ifndef PROLOGUE_VALUE_H
  15. #define PROLOGUE_VALUE_H

  16. /* When we analyze a prologue, we're really doing 'abstract
  17.    interpretation' or 'pseudo-evaluation': running the function's code
  18.    in simulation, but using conservative approximations of the values
  19.    it would have when it actually runs.  For example, if our function
  20.    starts with the instruction:

  21.       addi r1, 42     # add 42 to r1

  22.    we don't know exactly what value will be in r1 after executing this
  23.    instruction, but we do know it'll be 42 greater than its original
  24.    value.

  25.    If we then see an instruction like:

  26.       addi r1, 22     # add 22 to r1

  27.    we still don't know what r1's value is, but again, we can say it is
  28.    now 64 greater than its original value.

  29.    If the next instruction were:

  30.       mov r2, r1      # set r2 to r1's value

  31.    then we can say that r2's value is now the original value of r1
  32.    plus 64.

  33.    It's common for prologues to save registers on the stack, so we'll
  34.    need to track the values of stack frame slots, as well as the
  35.    registers.  So after an instruction like this:

  36.       mov (fp+4), r2

  37.    then we'd know that the stack slot four bytes above the frame
  38.    pointer holds the original value of r1 plus 64.

  39.    And so on.

  40.    Of course, this can only go so far before it gets unreasonable.  If
  41.    we wanted to be able to say anything about the value of r1 after
  42.    the instruction:

  43.       xor r1, r3      # exclusive-or r1 and r3, place result in r1

  44.    then things would get pretty complex.  But remember, we're just
  45.    doing a conservative approximation; if exclusive-or instructions
  46.    aren't relevant to prologues, we can just say r1's value is now
  47.    'unknown'.  We can ignore things that are too complex, if that loss
  48.    of information is acceptable for our application.

  49.    So when I say "conservative approximation" here, what I mean is an
  50.    approximation that is either accurate, or marked "unknown", but
  51.    never inaccurate.

  52.    Once you've reached the current PC, or an instruction that you
  53.    don't know how to simulate, you stop.  Now you can examine the
  54.    state of the registers and stack slots you've kept track of.

  55.    - To see how large your stack frame is, just check the value of the
  56.      stack pointer register; if it's the original value of the SP
  57.      minus a constant, then that constant is the stack frame's size.
  58.      If the SP's value has been marked as 'unknown', then that means
  59.      the prologue has done something too complex for us to track, and
  60.      we don't know the frame size.

  61.    - To see where we've saved the previous frame's registers, we just
  62.      search the values we've tracked --- stack slots, usually, but
  63.      registers, too, if you want --- for something equal to the
  64.      register's original value.  If the ABI suggests a standard place
  65.      to save a given register, then we can check there first, but
  66.      really, anything that will get us back the original value will
  67.      probably work.

  68.    Sure, this takes some work.  But prologue analyzers aren't
  69.    quick-and-simple pattern patching to recognize a few fixed prologue
  70.    forms any more; they're big, hairy functions.  Along with inferior
  71.    function calls, prologue analysis accounts for a substantial
  72.    portion of the time needed to stabilize a GDB port.  So I think
  73.    it's worthwhile to look for an approach that will be easier to
  74.    understand and maintain.  In the approach used here:

  75.    - It's easier to see that the analyzer is correct: you just see
  76.      whether the analyzer properly (albiet conservatively) simulates
  77.      the effect of each instruction.

  78.    - It's easier to extend the analyzer: you can add support for new
  79.      instructions, and know that you haven't broken anything that
  80.      wasn't already broken before.

  81.    - It's orthogonal: to gather new information, you don't need to
  82.      complicate the code for each instruction.  As long as your domain
  83.      of conservative values is already detailed enough to tell you
  84.      what you need, then all the existing instruction simulations are
  85.      already gathering the right data for you.

  86.    A 'struct prologue_value' is a conservative approximation of the
  87.    real value the register or stack slot will have.  */

  88. struct prologue_value {

  89.   /* What sort of value is this?  This determines the interpretation
  90.      of subsequent fields.  */
  91.   enum {

  92.     /* We don't know anything about the value.  This is also used for
  93.        values we could have kept track of, when doing so would have
  94.        been too complex and we don't want to bother.  The bottom of
  95.        our lattice.  */
  96.     pvk_unknown,

  97.     /* A known constant.  K is its value.  */
  98.     pvk_constant,

  99.     /* The value that register REG originally had *UPON ENTRY TO THE
  100.        FUNCTION*, plus K.  If K is zero, this means, obviously, just
  101.        the value REG had upon entry to the function.  REG is a GDB
  102.        register number.  Before we start interpreting, we initialize
  103.        every register R to { pvk_register, R, 0 }.  */
  104.     pvk_register,

  105.   } kind;

  106.   /* The meanings of the following fields depend on 'kind'; see the
  107.      comments for the specific 'kind' values.  */
  108.   int reg;
  109.   CORE_ADDR k;
  110. };

  111. typedef struct prologue_value pv_t;


  112. /* Return the unknown prologue value --- { pvk_unknown, ?, ? }.  */
  113. pv_t pv_unknown (void);

  114. /* Return the prologue value representing the constant K.  */
  115. pv_t pv_constant (CORE_ADDR k);

  116. /* Return the prologue value representing the original value of
  117.    register REG, plus the constant K.  */
  118. pv_t pv_register (int reg, CORE_ADDR k);


  119. /* Return conservative approximations of the results of the following
  120.    operations.  */
  121. pv_t pv_add (pv_t a, pv_t b);               /* a + b */
  122. pv_t pv_add_constant (pv_t v, CORE_ADDR k); /* a + k */
  123. pv_t pv_subtract (pv_t a, pv_t b);          /* a - b */
  124. pv_t pv_logical_and (pv_t a, pv_t b);       /* a & b */


  125. /* Return non-zero iff A and B are identical expressions.

  126.    This is not the same as asking if the two values are equal; the
  127.    result of such a comparison would have to be a pv_boolean, and
  128.    asking whether two 'unknown' values were equal would give you
  129.    pv_maybe.  Same for comparing, say, { pvk_register, R1, 0 } and {
  130.    pvk_register, R2, 0}.

  131.    Instead, this function asks whether the two representations are the
  132.    same.  */
  133. int pv_is_identical (pv_t a, pv_t b);


  134. /* Return non-zero if A is known to be a constant.  */
  135. int pv_is_constant (pv_t a);

  136. /* Return non-zero if A is the original value of register number R
  137.    plus some constant, zero otherwise.  */
  138. int pv_is_register (pv_t a, int r);


  139. /* Return non-zero if A is the original value of register R plus the
  140.    constant K.  */
  141. int pv_is_register_k (pv_t a, int r, CORE_ADDR k);

  142. /* A conservative boolean type, including "maybe", when we can't
  143.    figure out whether something is true or not.  */
  144. enum pv_boolean {
  145.   pv_maybe,
  146.   pv_definite_yes,
  147.   pv_definite_no,
  148. };


  149. /* Decide whether a reference to SIZE bytes at ADDR refers exactly to
  150.    an element of an array.  The array starts at ARRAY_ADDR, and has
  151.    ARRAY_LEN values of ELT_SIZE bytes each.  If ADDR definitely does
  152.    refer to an array element, set *I to the index of the referenced
  153.    element in the array, and return pv_definite_yes.  If it definitely
  154.    doesn't, return pv_definite_no.  If we can't tell, return pv_maybe.

  155.    If the reference does touch the array, but doesn't fall exactly on
  156.    an element boundary, or doesn't refer to the whole element, return
  157.    pv_maybe.  */
  158. enum pv_boolean pv_is_array_ref (pv_t addr, CORE_ADDR size,
  159.                                  pv_t array_addr, CORE_ADDR array_len,
  160.                                  CORE_ADDR elt_size,
  161.                                  int *i);


  162. /* A 'struct pv_area' keeps track of values stored in a particular
  163.    region of memory.  */
  164. struct pv_area;

  165. /* Create a new area, tracking stores relative to the original value
  166.    of BASE_REG.  If BASE_REG is SP, then this effectively records the
  167.    contents of the stack frame: the original value of the SP is the
  168.    frame's CFA, or some constant offset from it.

  169.    Stores to constant addresses, unknown addresses, or to addresses
  170.    relative to registers other than BASE_REG will trash this area; see
  171.    pv_area_store_would_trash.

  172.    To check whether a pointer refers to this area, only the low
  173.    ADDR_BIT bits will be compared.  */
  174. struct pv_area *make_pv_area (int base_reg, int addr_bit);

  175. /* Free AREA.  */
  176. void free_pv_area (struct pv_area *area);


  177. /* Register a cleanup to free AREA.  */
  178. struct cleanup *make_cleanup_free_pv_area (struct pv_area *area);


  179. /* Store the SIZE-byte value VALUE at ADDR in AREA.

  180.    If ADDR is not relative to the same base register we used in
  181.    creating AREA, then we can't tell which values here the stored
  182.    value might overlap, and we'll have to mark everything as
  183.    unknown.  */
  184. void pv_area_store (struct pv_area *area,
  185.                     pv_t addr,
  186.                     CORE_ADDR size,
  187.                     pv_t value);

  188. /* Return the SIZE-byte value at ADDR in AREA.  This may return
  189.    pv_unknown ().  */
  190. pv_t pv_area_fetch (struct pv_area *area, pv_t addr, CORE_ADDR size);

  191. /* Return true if storing to address ADDR in AREA would force us to
  192.    mark the contents of the entire area as unknown.  This could happen
  193.    if, say, ADDR is unknown, since we could be storing anywhere.  Or,
  194.    it could happen if ADDR is relative to a different register than
  195.    the other stores base register, since we don't know the relative
  196.    values of the two registers.

  197.    If you've reached such a store, it may be better to simply stop the
  198.    prologue analysis, and return the information you've gathered,
  199.    instead of losing all that information, most of which is probably
  200.    okay.  */
  201. int pv_area_store_would_trash (struct pv_area *area, pv_t addr);


  202. /* Search AREA for the original value of REGISTER.  If we can't find
  203.    it, return zero; if we can find it, return a non-zero value, and if
  204.    OFFSET_P is non-zero, set *OFFSET_P to the register's offset within
  205.    AREA.  GDBARCH is the architecture of which REGISTER is a member.

  206.    In the worst case, this takes time proportional to the number of
  207.    items stored in AREA.  If you plan to gather a lot of information
  208.    about registers saved in AREA, consider calling pv_area_scan
  209.    instead, and collecting all your information in one pass.  */
  210. int pv_area_find_reg (struct pv_area *area,
  211.                       struct gdbarch *gdbarch,
  212.                       int reg,
  213.                       CORE_ADDR *offset_p);


  214. /* For every part of AREA whose value we know, apply FUNC to CLOSURE,
  215.    the value's address, its size, and the value itself.  */
  216. void pv_area_scan (struct pv_area *area,
  217.                    void (*func) (void *closure,
  218.                                  pv_t addr,
  219.                                  CORE_ADDR size,
  220.                                  pv_t value),
  221.                    void *closure);


  222. #endif /* PROLOGUE_VALUE_H */