- /* Implementation of the GDB variable objects API.
- Copyright (C) 1999-2015 Free Software Foundation, Inc.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
- #include "defs.h"
- #include "value.h"
- #include "expression.h"
- #include "frame.h"
- #include "language.h"
- #include "gdbcmd.h"
- #include "block.h"
- #include "valprint.h"
- #include "gdb_regex.h"
- #include "varobj.h"
- #include "vec.h"
- #include "gdbthread.h"
- #include "inferior.h"
- #include "varobj-iter.h"
- #if HAVE_PYTHON
- #include "python/python.h"
- #include "python/python-internal.h"
- #else
- typedef int PyObject;
- #endif
- /* Non-zero if we want to see trace of varobj level stuff. */
- unsigned int varobjdebug = 0;
- static void
- show_varobjdebug (struct ui_file *file, int from_tty,
- struct cmd_list_element *c, const char *value)
- {
- fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
- }
- /* String representations of gdb's format codes. */
- char *varobj_format_string[] =
- { "natural", "binary", "decimal", "hexadecimal", "octal" };
- /* True if we want to allow Python-based pretty-printing. */
- static int pretty_printing = 0;
- void
- varobj_enable_pretty_printing (void)
- {
- pretty_printing = 1;
- }
- /* Data structures */
- /* Every root variable has one of these structures saved in its
- varobj. Members which must be free'd are noted. */
- struct varobj_root
- {
- /* Alloc'd expression for this parent. */
- struct expression *exp;
- /* Block for which this expression is valid. */
- const struct block *valid_block;
- /* The frame for this expression. This field is set iff valid_block is
- not NULL. */
- struct frame_id frame;
- /* The thread ID that this varobj_root belong to. This field
- is only valid if valid_block is not NULL.
- When not 0, indicates which thread 'frame' belongs to.
- When 0, indicates that the thread list was empty when the varobj_root
- was created. */
- int thread_id;
- /* If 1, the -var-update always recomputes the value in the
- current thread and frame. Otherwise, variable object is
- always updated in the specific scope/thread/frame. */
- int floating;
- /* Flag that indicates validity: set to 0 when this varobj_root refers
- to symbols that do not exist anymore. */
- int is_valid;
- /* Language-related operations for this variable and its
- children. */
- const struct lang_varobj_ops *lang_ops;
- /* The varobj for this root node. */
- struct varobj *rootvar;
- /* Next root variable */
- struct varobj_root *next;
- };
- /* Dynamic part of varobj. */
- struct varobj_dynamic
- {
- /* Whether the children of this varobj were requested. This field is
- used to decide if dynamic varobj should recompute their children.
- In the event that the frontend never asked for the children, we
- can avoid that. */
- int children_requested;
- /* The pretty-printer constructor. If NULL, then the default
- pretty-printer will be looked up. If None, then no
- pretty-printer will be installed. */
- PyObject *constructor;
- /* The pretty-printer that has been constructed. If NULL, then a
- new printer object is needed, and one will be constructed. */
- PyObject *pretty_printer;
- /* The iterator returned by the printer's 'children' method, or NULL
- if not available. */
- struct varobj_iter *child_iter;
- /* We request one extra item from the iterator, so that we can
- report to the caller whether there are more items than we have
- already reported. However, we don't want to install this value
- when we read it, because that will mess up future updates. So,
- we stash it here instead. */
- varobj_item *saved_item;
- };
- struct cpstack
- {
- char *name;
- struct cpstack *next;
- };
- /* A list of varobjs */
- struct vlist
- {
- struct varobj *var;
- struct vlist *next;
- };
- /* Private function prototypes */
- /* Helper functions for the above subcommands. */
- static int delete_variable (struct cpstack **, struct varobj *, int);
- static void delete_variable_1 (struct cpstack **, int *,
- struct varobj *, int, int);
- static int install_variable (struct varobj *);
- static void uninstall_variable (struct varobj *);
- static struct varobj *create_child (struct varobj *, int, char *);
- static struct varobj *
- create_child_with_value (struct varobj *parent, int index,
- struct varobj_item *item);
- /* Utility routines */
- static struct varobj *new_variable (void);
- static struct varobj *new_root_variable (void);
- static void free_variable (struct varobj *var);
- static struct cleanup *make_cleanup_free_variable (struct varobj *var);
- static enum varobj_display_formats variable_default_display (struct varobj *);
- static void cppush (struct cpstack **pstack, char *name);
- static char *cppop (struct cpstack **pstack);
- static int update_type_if_necessary (struct varobj *var,
- struct value *new_value);
- static int install_new_value (struct varobj *var, struct value *value,
- int initial);
- /* Language-specific routines. */
- static int number_of_children (struct varobj *);
- static char *name_of_variable (struct varobj *);
- static char *name_of_child (struct varobj *, int);
- static struct value *value_of_root (struct varobj **var_handle, int *);
- static struct value *value_of_child (struct varobj *parent, int index);
- static char *my_value_of_variable (struct varobj *var,
- enum varobj_display_formats format);
- static int is_root_p (struct varobj *var);
- static struct varobj *varobj_add_child (struct varobj *var,
- struct varobj_item *item);
- /* Private data */
- /* Mappings of varobj_display_formats enums to gdb's format codes. */
- static int format_code[] = { 0, 't', 'd', 'x', 'o' };
- /* Header of the list of root variable objects. */
- static struct varobj_root *rootlist;
- /* Prime number indicating the number of buckets in the hash table. */
- /* A prime large enough to avoid too many colisions. */
- #define VAROBJ_TABLE_SIZE 227
- /* Pointer to the varobj hash table (built at run time). */
- static struct vlist **varobj_table;
- /* API Implementation */
- static int
- is_root_p (struct varobj *var)
- {
- return (var->root->rootvar == var);
- }
- #ifdef HAVE_PYTHON
- /* Helper function to install a Python environment suitable for
- use during operations on VAR. */
- struct cleanup *
- varobj_ensure_python_env (struct varobj *var)
- {
- return ensure_python_env (var->root->exp->gdbarch,
- var->root->exp->language_defn);
- }
- #endif
- /* Creates a varobj (not its children). */
- /* Return the full FRAME which corresponds to the given CORE_ADDR
- or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
- static struct frame_info *
- find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
- {
- struct frame_info *frame = NULL;
- if (frame_addr == (CORE_ADDR) 0)
- return NULL;
- for (frame = get_current_frame ();
- frame != NULL;
- frame = get_prev_frame (frame))
- {
- /* The CORE_ADDR we get as argument was parsed from a string GDB
- output as $fp. This output got truncated to gdbarch_addr_bit.
- Truncate the frame base address in the same manner before
- comparing it against our argument. */
- CORE_ADDR frame_base = get_frame_base_address (frame);
- int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
- if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
- frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
- if (frame_base == frame_addr)
- return frame;
- }
- return NULL;
- }
- struct varobj *
- varobj_create (char *objname,
- char *expression, CORE_ADDR frame, enum varobj_type type)
- {
- struct varobj *var;
- struct cleanup *old_chain;
- /* Fill out a varobj structure for the (root) variable being constructed. */
- var = new_root_variable ();
- old_chain = make_cleanup_free_variable (var);
- if (expression != NULL)
- {
- struct frame_info *fi;
- struct frame_id old_id = null_frame_id;
- const struct block *block;
- const char *p;
- struct value *value = NULL;
- volatile struct gdb_exception except;
- CORE_ADDR pc;
- /* Parse and evaluate the expression, filling in as much of the
- variable's data as possible. */
- if (has_stack_frames ())
- {
- /* Allow creator to specify context of variable. */
- if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
- fi = get_selected_frame (NULL);
- else
- /* FIXME: cagney/2002-11-23: This code should be doing a
- lookup using the frame ID and not just the frame's
- ``address''. This, of course, means an interface
- change. However, with out that interface change ISAs,
- such as the ia64 with its two stacks, won't work.
- Similar goes for the case where there is a frameless
- function. */
- fi = find_frame_addr_in_frame_chain (frame);
- }
- else
- fi = NULL;
- /* frame = -2 means always use selected frame. */
- if (type == USE_SELECTED_FRAME)
- var->root->floating = 1;
- pc = 0;
- block = NULL;
- if (fi != NULL)
- {
- block = get_frame_block (fi, 0);
- pc = get_frame_pc (fi);
- }
- p = expression;
- innermost_block = NULL;
- /* Wrap the call to parse expression, so we can
- return a sensible error. */
- TRY_CATCH (except, RETURN_MASK_ERROR)
- {
- var->root->exp = parse_exp_1 (&p, pc, block, 0);
- }
- if (except.reason < 0)
- {
- do_cleanups (old_chain);
- return NULL;
- }
- /* Don't allow variables to be created for types. */
- if (var->root->exp->elts[0].opcode == OP_TYPE
- || var->root->exp->elts[0].opcode == OP_TYPEOF
- || var->root->exp->elts[0].opcode == OP_DECLTYPE)
- {
- do_cleanups (old_chain);
- fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
- " as an expression.\n");
- return NULL;
- }
- var->format = variable_default_display (var);
- var->root->valid_block = innermost_block;
- var->name = xstrdup (expression);
- /* For a root var, the name and the expr are the same. */
- var->path_expr = xstrdup (expression);
- /* When the frame is different from the current frame,
- we must select the appropriate frame before parsing
- the expression, otherwise the value will not be current.
- Since select_frame is so benign, just call it for all cases. */
- if (innermost_block)
- {
- /* User could specify explicit FRAME-ADDR which was not found but
- EXPRESSION is frame specific and we would not be able to evaluate
- it correctly next time. With VALID_BLOCK set we must also set
- FRAME and THREAD_ID. */
- if (fi == NULL)
- error (_("Failed to find the specified frame"));
- var->root->frame = get_frame_id (fi);
- var->root->thread_id = pid_to_thread_id (inferior_ptid);
- old_id = get_frame_id (get_selected_frame (NULL));
- select_frame (fi);
- }
- /* We definitely need to catch errors here.
- If evaluate_expression succeeds we got the value we wanted.
- But if it fails, we still go on with a call to evaluate_type(). */
- TRY_CATCH (except, RETURN_MASK_ERROR)
- {
- value = evaluate_expression (var->root->exp);
- }
- if (except.reason < 0)
- {
- /* Error getting the value. Try to at least get the
- right type. */
- struct value *type_only_value = evaluate_type (var->root->exp);
- var->type = value_type (type_only_value);
- }
- else
- {
- int real_type_found = 0;
- var->type = value_actual_type (value, 0, &real_type_found);
- if (real_type_found)
- value = value_cast (var->type, value);
- }
- /* Set language info */
- var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
- install_new_value (var, value, 1 /* Initial assignment */);
- /* Set ourselves as our root. */
- var->root->rootvar = var;
- /* Reset the selected frame. */
- if (frame_id_p (old_id))
- select_frame (frame_find_by_id (old_id));
- }
- /* If the variable object name is null, that means this
- is a temporary variable, so don't install it. */
- if ((var != NULL) && (objname != NULL))
- {
- var->obj_name = xstrdup (objname);
- /* If a varobj name is duplicated, the install will fail so
- we must cleanup. */
- if (!install_variable (var))
- {
- do_cleanups (old_chain);
- return NULL;
- }
- }
- discard_cleanups (old_chain);
- return var;
- }
- /* Generates an unique name that can be used for a varobj. */
- char *
- varobj_gen_name (void)
- {
- static int id = 0;
- char *obj_name;
- /* Generate a name for this object. */
- id++;
- obj_name = xstrprintf ("var%d", id);
- return obj_name;
- }
- /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
- error if OBJNAME cannot be found. */
- struct varobj *
- varobj_get_handle (char *objname)
- {
- struct vlist *cv;
- const char *chp;
- unsigned int index = 0;
- unsigned int i = 1;
- for (chp = objname; *chp; chp++)
- {
- index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
- }
- cv = *(varobj_table + index);
- while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
- cv = cv->next;
- if (cv == NULL)
- error (_("Variable object not found"));
- return cv->var;
- }
- /* Given the handle, return the name of the object. */
- char *
- varobj_get_objname (struct varobj *var)
- {
- return var->obj_name;
- }
- /* Given the handle, return the expression represented by the object. */
- char *
- varobj_get_expression (struct varobj *var)
- {
- return name_of_variable (var);
- }
- /* Deletes a varobj and all its children if only_children == 0,
- otherwise deletes only the children; returns a malloc'ed list of
- all the (malloc'ed) names of the variables that have been deleted
- (NULL terminated). */
- int
- varobj_delete (struct varobj *var, char ***dellist, int only_children)
- {
- int delcount;
- int mycount;
- struct cpstack *result = NULL;
- char **cp;
- /* Initialize a stack for temporary results. */
- cppush (&result, NULL);
- if (only_children)
- /* Delete only the variable children. */
- delcount = delete_variable (&result, var, 1 /* only the children */ );
- else
- /* Delete the variable and all its children. */
- delcount = delete_variable (&result, var, 0 /* parent+children */ );
- /* We may have been asked to return a list of what has been deleted. */
- if (dellist != NULL)
- {
- *dellist = xmalloc ((delcount + 1) * sizeof (char *));
- cp = *dellist;
- mycount = delcount;
- *cp = cppop (&result);
- while ((*cp != NULL) && (mycount > 0))
- {
- mycount--;
- cp++;
- *cp = cppop (&result);
- }
- if (mycount || (*cp != NULL))
- warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
- mycount);
- }
- return delcount;
- }
- #if HAVE_PYTHON
- /* Convenience function for varobj_set_visualizer. Instantiate a
- pretty-printer for a given value. */
- static PyObject *
- instantiate_pretty_printer (PyObject *constructor, struct value *value)
- {
- PyObject *val_obj = NULL;
- PyObject *printer;
- val_obj = value_to_value_object (value);
- if (! val_obj)
- return NULL;
- printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
- Py_DECREF (val_obj);
- return printer;
- }
- #endif
- /* Set/Get variable object display format. */
- enum varobj_display_formats
- varobj_set_display_format (struct varobj *var,
- enum varobj_display_formats format)
- {
- switch (format)
- {
- case FORMAT_NATURAL:
- case FORMAT_BINARY:
- case FORMAT_DECIMAL:
- case FORMAT_HEXADECIMAL:
- case FORMAT_OCTAL:
- var->format = format;
- break;
- default:
- var->format = variable_default_display (var);
- }
- if (varobj_value_is_changeable_p (var)
- && var->value && !value_lazy (var->value))
- {
- xfree (var->print_value);
- var->print_value = varobj_value_get_print_value (var->value,
- var->format, var);
- }
- return var->format;
- }
- enum varobj_display_formats
- varobj_get_display_format (struct varobj *var)
- {
- return var->format;
- }
- char *
- varobj_get_display_hint (struct varobj *var)
- {
- char *result = NULL;
- #if HAVE_PYTHON
- struct cleanup *back_to;
- if (!gdb_python_initialized)
- return NULL;
- back_to = varobj_ensure_python_env (var);
- if (var->dynamic->pretty_printer != NULL)
- result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
- do_cleanups (back_to);
- #endif
- return result;
- }
- /* Return true if the varobj has items after TO, false otherwise. */
- int
- varobj_has_more (struct varobj *var, int to)
- {
- if (VEC_length (varobj_p, var->children) > to)
- return 1;
- return ((to == -1 || VEC_length (varobj_p, var->children) == to)
- && (var->dynamic->saved_item != NULL));
- }
- /* If the variable object is bound to a specific thread, that
- is its evaluation can always be done in context of a frame
- inside that thread, returns GDB id of the thread -- which
- is always positive. Otherwise, returns -1. */
- int
- varobj_get_thread_id (struct varobj *var)
- {
- if (var->root->valid_block && var->root->thread_id > 0)
- return var->root->thread_id;
- else
- return -1;
- }
- void
- varobj_set_frozen (struct varobj *var, int frozen)
- {
- /* When a variable is unfrozen, we don't fetch its value.
- The 'not_fetched' flag remains set, so next -var-update
- won't complain.
- We don't fetch the value, because for structures the client
- should do -var-update anyway. It would be bad to have different
- client-size logic for structure and other types. */
- var->frozen = frozen;
- }
- int
- varobj_get_frozen (struct varobj *var)
- {
- return var->frozen;
- }
- /* A helper function that restricts a range to what is actually
- available in a VEC. This follows the usual rules for the meaning
- of FROM and TO -- if either is negative, the entire range is
- used. */
- void
- varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
- {
- if (*from < 0 || *to < 0)
- {
- *from = 0;
- *to = VEC_length (varobj_p, children);
- }
- else
- {
- if (*from > VEC_length (varobj_p, children))
- *from = VEC_length (varobj_p, children);
- if (*to > VEC_length (varobj_p, children))
- *to = VEC_length (varobj_p, children);
- if (*from > *to)
- *from = *to;
- }
- }
- /* A helper for update_dynamic_varobj_children that installs a new
- child when needed. */
- static void
- install_dynamic_child (struct varobj *var,
- VEC (varobj_p) **changed,
- VEC (varobj_p) **type_changed,
- VEC (varobj_p) **new,
- VEC (varobj_p) **unchanged,
- int *cchanged,
- int index,
- struct varobj_item *item)
- {
- if (VEC_length (varobj_p, var->children) < index + 1)
- {
- /* There's no child yet. */
- struct varobj *child = varobj_add_child (var, item);
- if (new)
- {
- VEC_safe_push (varobj_p, *new, child);
- *cchanged = 1;
- }
- }
- else
- {
- varobj_p existing = VEC_index (varobj_p, var->children, index);
- int type_updated = update_type_if_necessary (existing, item->value);
- if (type_updated)
- {
- if (type_changed)
- VEC_safe_push (varobj_p, *type_changed, existing);
- }
- if (install_new_value (existing, item->value, 0))
- {
- if (!type_updated && changed)
- VEC_safe_push (varobj_p, *changed, existing);
- }
- else if (!type_updated && unchanged)
- VEC_safe_push (varobj_p, *unchanged, existing);
- }
- }
- #if HAVE_PYTHON
- static int
- dynamic_varobj_has_child_method (struct varobj *var)
- {
- struct cleanup *back_to;
- PyObject *printer = var->dynamic->pretty_printer;
- int result;
- if (!gdb_python_initialized)
- return 0;
- back_to = varobj_ensure_python_env (var);
- result = PyObject_HasAttr (printer, gdbpy_children_cst);
- do_cleanups (back_to);
- return result;
- }
- #endif
- /* A factory for creating dynamic varobj's iterators. Returns an
- iterator object suitable for iterating over VAR's children. */
- static struct varobj_iter *
- varobj_get_iterator (struct varobj *var)
- {
- #if HAVE_PYTHON
- if (var->dynamic->pretty_printer)
- return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
- #endif
- gdb_assert_not_reached (_("\
- requested an iterator from a non-dynamic varobj"));
- }
- /* Release and clear VAR's saved item, if any. */
- static void
- varobj_clear_saved_item (struct varobj_dynamic *var)
- {
- if (var->saved_item != NULL)
- {
- value_free (var->saved_item->value);
- xfree (var->saved_item);
- var->saved_item = NULL;
- }
- }
- static int
- update_dynamic_varobj_children (struct varobj *var,
- VEC (varobj_p) **changed,
- VEC (varobj_p) **type_changed,
- VEC (varobj_p) **new,
- VEC (varobj_p) **unchanged,
- int *cchanged,
- int update_children,
- int from,
- int to)
- {
- int i;
- *cchanged = 0;
- if (update_children || var->dynamic->child_iter == NULL)
- {
- varobj_iter_delete (var->dynamic->child_iter);
- var->dynamic->child_iter = varobj_get_iterator (var);
- varobj_clear_saved_item (var->dynamic);
- i = 0;
- if (var->dynamic->child_iter == NULL)
- return 0;
- }
- else
- i = VEC_length (varobj_p, var->children);
- /* We ask for one extra child, so that MI can report whether there
- are more children. */
- for (; to < 0 || i < to + 1; ++i)
- {
- varobj_item *item;
- /* See if there was a leftover from last time. */
- if (var->dynamic->saved_item != NULL)
- {
- item = var->dynamic->saved_item;
- var->dynamic->saved_item = NULL;
- }
- else
- {
- item = varobj_iter_next (var->dynamic->child_iter);
- /* Release vitem->value so its lifetime is not bound to the
- execution of a command. */
- if (item != NULL && item->value != NULL)
- release_value_or_incref (item->value);
- }
- if (item == NULL)
- {
- /* Iteration is done. Remove iterator from VAR. */
- varobj_iter_delete (var->dynamic->child_iter);
- var->dynamic->child_iter = NULL;
- break;
- }
- /* We don't want to push the extra child on any report list. */
- if (to < 0 || i < to)
- {
- int can_mention = from < 0 || i >= from;
- install_dynamic_child (var, can_mention ? changed : NULL,
- can_mention ? type_changed : NULL,
- can_mention ? new : NULL,
- can_mention ? unchanged : NULL,
- can_mention ? cchanged : NULL, i,
- item);
- xfree (item);
- }
- else
- {
- var->dynamic->saved_item = item;
- /* We want to truncate the child list just before this
- element. */
- break;
- }
- }
- if (i < VEC_length (varobj_p, var->children))
- {
- int j;
- *cchanged = 1;
- for (j = i; j < VEC_length (varobj_p, var->children); ++j)
- varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
- VEC_truncate (varobj_p, var->children, i);
- }
- /* If there are fewer children than requested, note that the list of
- children changed. */
- if (to >= 0 && VEC_length (varobj_p, var->children) < to)
- *cchanged = 1;
- var->num_children = VEC_length (varobj_p, var->children);
- return 1;
- }
- int
- varobj_get_num_children (struct varobj *var)
- {
- if (var->num_children == -1)
- {
- if (varobj_is_dynamic_p (var))
- {
- int dummy;
- /* If we have a dynamic varobj, don't report -1 children.
- So, try to fetch some children first. */
- update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
- 0, 0, 0);
- }
- else
- var->num_children = number_of_children (var);
- }
- return var->num_children >= 0 ? var->num_children : 0;
- }
- /* Creates a list of the immediate children of a variable object;
- the return code is the number of such children or -1 on error. */
- VEC (varobj_p)*
- varobj_list_children (struct varobj *var, int *from, int *to)
- {
- char *name;
- int i, children_changed;
- var->dynamic->children_requested = 1;
- if (varobj_is_dynamic_p (var))
- {
- /* This, in theory, can result in the number of children changing without
- frontend noticing. But well, calling -var-list-children on the same
- varobj twice is not something a sane frontend would do. */
- update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
- &children_changed, 0, 0, *to);
- varobj_restrict_range (var->children, from, to);
- return var->children;
- }
- if (var->num_children == -1)
- var->num_children = number_of_children (var);
- /* If that failed, give up. */
- if (var->num_children == -1)
- return var->children;
- /* If we're called when the list of children is not yet initialized,
- allocate enough elements in it. */
- while (VEC_length (varobj_p, var->children) < var->num_children)
- VEC_safe_push (varobj_p, var->children, NULL);
- for (i = 0; i < var->num_children; i++)
- {
- varobj_p existing = VEC_index (varobj_p, var->children, i);
- if (existing == NULL)
- {
- /* Either it's the first call to varobj_list_children for
- this variable object, and the child was never created,
- or it was explicitly deleted by the client. */
- name = name_of_child (var, i);
- existing = create_child (var, i, name);
- VEC_replace (varobj_p, var->children, i, existing);
- }
- }
- varobj_restrict_range (var->children, from, to);
- return var->children;
- }
- static struct varobj *
- varobj_add_child (struct varobj *var, struct varobj_item *item)
- {
- varobj_p v = create_child_with_value (var,
- VEC_length (varobj_p, var->children),
- item);
- VEC_safe_push (varobj_p, var->children, v);
- return v;
- }
- /* Obtain the type of an object Variable as a string similar to the one gdb
- prints on the console. */
- char *
- varobj_get_type (struct varobj *var)
- {
- /* For the "fake" variables, do not return a type. (Its type is
- NULL, too.)
- Do not return a type for invalid variables as well. */
- if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
- return NULL;
- return type_to_string (var->type);
- }
- /* Obtain the type of an object variable. */
- struct type *
- varobj_get_gdb_type (struct varobj *var)
- {
- return var->type;
- }
- /* Is VAR a path expression parent, i.e., can it be used to construct
- a valid path expression? */
- static int
- is_path_expr_parent (struct varobj *var)
- {
- gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
- return var->root->lang_ops->is_path_expr_parent (var);
- }
- /* Is VAR a path expression parent, i.e., can it be used to construct
- a valid path expression? By default we assume any VAR can be a path
- parent. */
- int
- varobj_default_is_path_expr_parent (struct varobj *var)
- {
- return 1;
- }
- /* Return the path expression parent for VAR. */
- struct varobj *
- varobj_get_path_expr_parent (struct varobj *var)
- {
- struct varobj *parent = var;
- while (!is_root_p (parent) && !is_path_expr_parent (parent))
- parent = parent->parent;
- return parent;
- }
- /* Return a pointer to the full rooted expression of varobj VAR.
- If it has not been computed yet, compute it. */
- char *
- varobj_get_path_expr (struct varobj *var)
- {
- if (var->path_expr != NULL)
- return var->path_expr;
- else
- {
- /* For root varobjs, we initialize path_expr
- when creating varobj, so here it should be
- child varobj. */
- gdb_assert (!is_root_p (var));
- return (*var->root->lang_ops->path_expr_of_child) (var);
- }
- }
- const struct language_defn *
- varobj_get_language (struct varobj *var)
- {
- return var->root->exp->language_defn;
- }
- int
- varobj_get_attributes (struct varobj *var)
- {
- int attributes = 0;
- if (varobj_editable_p (var))
- /* FIXME: define masks for attributes. */
- attributes |= 0x00000001; /* Editable */
- return attributes;
- }
- /* Return true if VAR is a dynamic varobj. */
- int
- varobj_is_dynamic_p (struct varobj *var)
- {
- return var->dynamic->pretty_printer != NULL;
- }
- char *
- varobj_get_formatted_value (struct varobj *var,
- enum varobj_display_formats format)
- {
- return my_value_of_variable (var, format);
- }
- char *
- varobj_get_value (struct varobj *var)
- {
- return my_value_of_variable (var, var->format);
- }
- /* Set the value of an object variable (if it is editable) to the
- value of the given expression. */
- /* Note: Invokes functions that can call error(). */
- int
- varobj_set_value (struct varobj *var, char *expression)
- {
- struct value *val = NULL; /* Initialize to keep gcc happy. */
- /* The argument "expression" contains the variable's new value.
- We need to first construct a legal expression for this -- ugh! */
- /* Does this cover all the bases? */
- struct expression *exp;
- struct value *value = NULL; /* Initialize to keep gcc happy. */
- int saved_input_radix = input_radix;
- const char *s = expression;
- volatile struct gdb_exception except;
- gdb_assert (varobj_editable_p (var));
- input_radix = 10; /* ALWAYS reset to decimal temporarily. */
- exp = parse_exp_1 (&s, 0, 0, 0);
- TRY_CATCH (except, RETURN_MASK_ERROR)
- {
- value = evaluate_expression (exp);
- }
- if (except.reason < 0)
- {
- /* We cannot proceed without a valid expression. */
- xfree (exp);
- return 0;
- }
- /* All types that are editable must also be changeable. */
- gdb_assert (varobj_value_is_changeable_p (var));
- /* The value of a changeable variable object must not be lazy. */
- gdb_assert (!value_lazy (var->value));
- /* Need to coerce the input. We want to check if the
- value of the variable object will be different
- after assignment, and the first thing value_assign
- does is coerce the input.
- For example, if we are assigning an array to a pointer variable we
- should compare the pointer with the array's address, not with the
- array's content. */
- value = coerce_array (value);
- /* The new value may be lazy. value_assign, or
- rather value_contents, will take care of this. */
- TRY_CATCH (except, RETURN_MASK_ERROR)
- {
- val = value_assign (var->value, value);
- }
- if (except.reason < 0)
- return 0;
- /* If the value has changed, record it, so that next -var-update can
- report this change. If a variable had a value of '1', we've set it
- to '333' and then set again to '1', when -var-update will report this
- variable as changed -- because the first assignment has set the
- 'updated' flag. There's no need to optimize that, because return value
- of -var-update should be considered an approximation. */
- var->updated = install_new_value (var, val, 0 /* Compare values. */);
- input_radix = saved_input_radix;
- return 1;
- }
- #if HAVE_PYTHON
- /* A helper function to install a constructor function and visualizer
- in a varobj_dynamic. */
- static void
- install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
- PyObject *visualizer)
- {
- Py_XDECREF (var->constructor);
- var->constructor = constructor;
- Py_XDECREF (var->pretty_printer);
- var->pretty_printer = visualizer;
- varobj_iter_delete (var->child_iter);
- var->child_iter = NULL;
- }
- /* Install the default visualizer for VAR. */
- static void
- install_default_visualizer (struct varobj *var)
- {
- /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
- if (CPLUS_FAKE_CHILD (var))
- return;
- if (pretty_printing)
- {
- PyObject *pretty_printer = NULL;
- if (var->value)
- {
- pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
- if (! pretty_printer)
- {
- gdbpy_print_stack ();
- error (_("Cannot instantiate printer for default visualizer"));
- }
- }
- if (pretty_printer == Py_None)
- {
- Py_DECREF (pretty_printer);
- pretty_printer = NULL;
- }
- install_visualizer (var->dynamic, NULL, pretty_printer);
- }
- }
- /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
- make a new object. */
- static void
- construct_visualizer (struct varobj *var, PyObject *constructor)
- {
- PyObject *pretty_printer;
- /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
- if (CPLUS_FAKE_CHILD (var))
- return;
- Py_INCREF (constructor);
- if (constructor == Py_None)
- pretty_printer = NULL;
- else
- {
- pretty_printer = instantiate_pretty_printer (constructor, var->value);
- if (! pretty_printer)
- {
- gdbpy_print_stack ();
- Py_DECREF (constructor);
- constructor = Py_None;
- Py_INCREF (constructor);
- }
- if (pretty_printer == Py_None)
- {
- Py_DECREF (pretty_printer);
- pretty_printer = NULL;
- }
- }
- install_visualizer (var->dynamic, constructor, pretty_printer);
- }
- #endif /* HAVE_PYTHON */
- /* A helper function for install_new_value. This creates and installs
- a visualizer for VAR, if appropriate. */
- static void
- install_new_value_visualizer (struct varobj *var)
- {
- #if HAVE_PYTHON
- /* If the constructor is None, then we want the raw value. If VAR
- does not have a value, just skip this. */
- if (!gdb_python_initialized)
- return;
- if (var->dynamic->constructor != Py_None && var->value != NULL)
- {
- struct cleanup *cleanup;
- cleanup = varobj_ensure_python_env (var);
- if (var->dynamic->constructor == NULL)
- install_default_visualizer (var);
- else
- construct_visualizer (var, var->dynamic->constructor);
- do_cleanups (cleanup);
- }
- #else
- /* Do nothing. */
- #endif
- }
- /* When using RTTI to determine variable type it may be changed in runtime when
- the variable value is changed. This function checks whether type of varobj
- VAR will change when a new value NEW_VALUE is assigned and if it is so
- updates the type of VAR. */
- static int
- update_type_if_necessary (struct varobj *var, struct value *new_value)
- {
- if (new_value)
- {
- struct value_print_options opts;
- get_user_print_options (&opts);
- if (opts.objectprint)
- {
- struct type *new_type;
- char *curr_type_str, *new_type_str;
- new_type = value_actual_type (new_value, 0, 0);
- new_type_str = type_to_string (new_type);
- curr_type_str = varobj_get_type (var);
- if (strcmp (curr_type_str, new_type_str) != 0)
- {
- var->type = new_type;
- /* This information may be not valid for a new type. */
- varobj_delete (var, NULL, 1);
- VEC_free (varobj_p, var->children);
- var->num_children = -1;
- return 1;
- }
- }
- }
- return 0;
- }
- /* Assign a new value to a variable object. If INITIAL is non-zero,
- this is the first assignement after the variable object was just
- created, or changed type. In that case, just assign the value
- and return 0.
- Otherwise, assign the new value, and return 1 if the value is
- different from the current one, 0 otherwise. The comparison is
- done on textual representation of value. Therefore, some types
- need not be compared. E.g. for structures the reported value is
- always "{...}", so no comparison is necessary here. If the old
- value was NULL and new one is not, or vice versa, we always return 1.
- The VALUE parameter should not be released -- the function will
- take care of releasing it when needed. */
- static int
- install_new_value (struct varobj *var, struct value *value, int initial)
- {
- int changeable;
- int need_to_fetch;
- int changed = 0;
- int intentionally_not_fetched = 0;
- char *print_value = NULL;
- /* We need to know the varobj's type to decide if the value should
- be fetched or not. C++ fake children (public/protected/private)
- don't have a type. */
- gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
- changeable = varobj_value_is_changeable_p (var);
- /* If the type has custom visualizer, we consider it to be always
- changeable. FIXME: need to make sure this behaviour will not
- mess up read-sensitive values. */
- if (var->dynamic->pretty_printer != NULL)
- changeable = 1;
- need_to_fetch = changeable;
- /* We are not interested in the address of references, and given
- that in C++ a reference is not rebindable, it cannot
- meaningfully change. So, get hold of the real value. */
- if (value)
- value = coerce_ref (value);
- if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
- /* For unions, we need to fetch the value implicitly because
- of implementation of union member fetch. When gdb
- creates a value for a field and the value of the enclosing
- structure is not lazy, it immediately copies the necessary
- bytes from the enclosing values. If the enclosing value is
- lazy, the call to value_fetch_lazy on the field will read
- the data from memory. For unions, that means we'll read the
- same memory more than once, which is not desirable. So
- fetch now. */
- need_to_fetch = 1;
- /* The new value might be lazy. If the type is changeable,
- that is we'll be comparing values of this type, fetch the
- value now. Otherwise, on the next update the old value
- will be lazy, which means we've lost that old value. */
- if (need_to_fetch && value && value_lazy (value))
- {
- struct varobj *parent = var->parent;
- int frozen = var->frozen;
- for (; !frozen && parent; parent = parent->parent)
- frozen |= parent->frozen;
- if (frozen && initial)
- {
- /* For variables that are frozen, or are children of frozen
- variables, we don't do fetch on initial assignment.
- For non-initial assignemnt we do the fetch, since it means we're
- explicitly asked to compare the new value with the old one. */
- intentionally_not_fetched = 1;
- }
- else
- {
- volatile struct gdb_exception except;
- TRY_CATCH (except, RETURN_MASK_ERROR)
- {
- value_fetch_lazy (value);
- }
- if (except.reason < 0)
- {
- /* Set the value to NULL, so that for the next -var-update,
- we don't try to compare the new value with this value,
- that we couldn't even read. */
- value = NULL;
- }
- }
- }
- /* Get a reference now, before possibly passing it to any Python
- code that might release it. */
- if (value != NULL)
- value_incref (value);
- /* Below, we'll be comparing string rendering of old and new
- values. Don't get string rendering if the value is
- lazy -- if it is, the code above has decided that the value
- should not be fetched. */
- if (value != NULL && !value_lazy (value)
- && var->dynamic->pretty_printer == NULL)
- print_value = varobj_value_get_print_value (value, var->format, var);
- /* If the type is changeable, compare the old and the new values.
- If this is the initial assignment, we don't have any old value
- to compare with. */
- if (!initial && changeable)
- {
- /* If the value of the varobj was changed by -var-set-value,
- then the value in the varobj and in the target is the same.
- However, that value is different from the value that the
- varobj had after the previous -var-update. So need to the
- varobj as changed. */
- if (var->updated)
- {
- changed = 1;
- }
- else if (var->dynamic->pretty_printer == NULL)
- {
- /* Try to compare the values. That requires that both
- values are non-lazy. */
- if (var->not_fetched && value_lazy (var->value))
- {
- /* This is a frozen varobj and the value was never read.
- Presumably, UI shows some "never read" indicator.
- Now that we've fetched the real value, we need to report
- this varobj as changed so that UI can show the real
- value. */
- changed = 1;
- }
- else if (var->value == NULL && value == NULL)
- /* Equal. */
- ;
- else if (var->value == NULL || value == NULL)
- {
- changed = 1;
- }
- else
- {
- gdb_assert (!value_lazy (var->value));
- gdb_assert (!value_lazy (value));
- gdb_assert (var->print_value != NULL && print_value != NULL);
- if (strcmp (var->print_value, print_value) != 0)
- changed = 1;
- }
- }
- }
- if (!initial && !changeable)
- {
- /* For values that are not changeable, we don't compare the values.
- However, we want to notice if a value was not NULL and now is NULL,
- or vise versa, so that we report when top-level varobjs come in scope
- and leave the scope. */
- changed = (var->value != NULL) != (value != NULL);
- }
- /* We must always keep the new value, since children depend on it. */
- if (var->value != NULL && var->value != value)
- value_free (var->value);
- var->value = value;
- if (value && value_lazy (value) && intentionally_not_fetched)
- var->not_fetched = 1;
- else
- var->not_fetched = 0;
- var->updated = 0;
- install_new_value_visualizer (var);
- /* If we installed a pretty-printer, re-compare the printed version
- to see if the variable changed. */
- if (var->dynamic->pretty_printer != NULL)
- {
- xfree (print_value);
- print_value = varobj_value_get_print_value (var->value, var->format,
- var);
- if ((var->print_value == NULL && print_value != NULL)
- || (var->print_value != NULL && print_value == NULL)
- || (var->print_value != NULL && print_value != NULL
- && strcmp (var->print_value, print_value) != 0))
- changed = 1;
- }
- if (var->print_value)
- xfree (var->print_value);
- var->print_value = print_value;
- gdb_assert (!var->value || value_type (var->value));
- return changed;
- }
- /* Return the requested range for a varobj. VAR is the varobj. FROM
- and TO are out parameters; *FROM and *TO will be set to the
- selected sub-range of VAR. If no range was selected using
- -var-set-update-range, then both will be -1. */
- void
- varobj_get_child_range (struct varobj *var, int *from, int *to)
- {
- *from = var->from;
- *to = var->to;
- }
- /* Set the selected sub-range of children of VAR to start at index
- FROM and end at index TO. If either FROM or TO is less than zero,
- this is interpreted as a request for all children. */
- void
- varobj_set_child_range (struct varobj *var, int from, int to)
- {
- var->from = from;
- var->to = to;
- }
- void
- varobj_set_visualizer (struct varobj *var, const char *visualizer)
- {
- #if HAVE_PYTHON
- PyObject *mainmod, *globals, *constructor;
- struct cleanup *back_to;
- if (!gdb_python_initialized)
- return;
- back_to = varobj_ensure_python_env (var);
- mainmod = PyImport_AddModule ("__main__");
- globals = PyModule_GetDict (mainmod);
- Py_INCREF (globals);
- make_cleanup_py_decref (globals);
- constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
- if (! constructor)
- {
- gdbpy_print_stack ();
- error (_("Could not evaluate visualizer expression: %s"), visualizer);
- }
- construct_visualizer (var, constructor);
- Py_XDECREF (constructor);
- /* If there are any children now, wipe them. */
- varobj_delete (var, NULL, 1 /* children only */);
- var->num_children = -1;
- do_cleanups (back_to);
- #else
- error (_("Python support required"));
- #endif
- }
- /* If NEW_VALUE is the new value of the given varobj (var), return
- non-zero if var has mutated. In other words, if the type of
- the new value is different from the type of the varobj's old
- value.
- NEW_VALUE may be NULL, if the varobj is now out of scope. */
- static int
- varobj_value_has_mutated (struct varobj *var, struct value *new_value,
- struct type *new_type)
- {
- /* If we haven't previously computed the number of children in var,
- it does not matter from the front-end's perspective whether
- the type has mutated or not. For all intents and purposes,
- it has not mutated. */
- if (var->num_children < 0)
- return 0;
- if (var->root->lang_ops->value_has_mutated)
- {
- /* The varobj module, when installing new values, explicitly strips
- references, saying that we're not interested in those addresses.
- But detection of mutation happens before installing the new
- value, so our value may be a reference that we need to strip
- in order to remain consistent. */
- if (new_value != NULL)
- new_value = coerce_ref (new_value);
- return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
- }
- else
- return 0;
- }
- /* Update the values for a variable and its children. This is a
- two-pronged attack. First, re-parse the value for the root's
- expression to see if it's changed. Then go all the way
- through its children, reconstructing them and noting if they've
- changed.
- The EXPLICIT parameter specifies if this call is result
- of MI request to update this specific variable, or
- result of implicit -var-update *. For implicit request, we don't
- update frozen variables.
- NOTE: This function may delete the caller's varobj. If it
- returns TYPE_CHANGED, then it has done this and VARP will be modified
- to point to the new varobj. */
- VEC(varobj_update_result) *
- varobj_update (struct varobj **varp, int explicit)
- {
- int type_changed = 0;
- int i;
- struct value *new;
- VEC (varobj_update_result) *stack = NULL;
- VEC (varobj_update_result) *result = NULL;
- /* Frozen means frozen -- we don't check for any change in
- this varobj, including its going out of scope, or
- changing type. One use case for frozen varobjs is
- retaining previously evaluated expressions, and we don't
- want them to be reevaluated at all. */
- if (!explicit && (*varp)->frozen)
- return result;
- if (!(*varp)->root->is_valid)
- {
- varobj_update_result r = {0};
- r.varobj = *varp;
- r.status = VAROBJ_INVALID;
- VEC_safe_push (varobj_update_result, result, &r);
- return result;
- }
- if ((*varp)->root->rootvar == *varp)
- {
- varobj_update_result r = {0};
- r.varobj = *varp;
- r.status = VAROBJ_IN_SCOPE;
- /* Update the root variable. value_of_root can return NULL
- if the variable is no longer around, i.e. we stepped out of
- the frame in which a local existed. We are letting the
- value_of_root variable dispose of the varobj if the type
- has changed. */
- new = value_of_root (varp, &type_changed);
- if (update_type_if_necessary(*varp, new))
- type_changed = 1;
- r.varobj = *varp;
- r.type_changed = type_changed;
- if (install_new_value ((*varp), new, type_changed))
- r.changed = 1;
- if (new == NULL)
- r.status = VAROBJ_NOT_IN_SCOPE;
- r.value_installed = 1;
- if (r.status == VAROBJ_NOT_IN_SCOPE)
- {
- if (r.type_changed || r.changed)
- VEC_safe_push (varobj_update_result, result, &r);
- return result;
- }
- VEC_safe_push (varobj_update_result, stack, &r);
- }
- else
- {
- varobj_update_result r = {0};
- r.varobj = *varp;
- VEC_safe_push (varobj_update_result, stack, &r);
- }
- /* Walk through the children, reconstructing them all. */
- while (!VEC_empty (varobj_update_result, stack))
- {
- varobj_update_result r = *(VEC_last (varobj_update_result, stack));
- struct varobj *v = r.varobj;
- VEC_pop (varobj_update_result, stack);
- /* Update this variable, unless it's a root, which is already
- updated. */
- if (!r.value_installed)
- {
- struct type *new_type;
- new = value_of_child (v->parent, v->index);
- if (update_type_if_necessary(v, new))
- r.type_changed = 1;
- if (new)
- new_type = value_type (new);
- else
- new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
- if (varobj_value_has_mutated (v, new, new_type))
- {
- /* The children are no longer valid; delete them now.
- Report the fact that its type changed as well. */
- varobj_delete (v, NULL, 1 /* only_children */);
- v->num_children = -1;
- v->to = -1;
- v->from = -1;
- v->type = new_type;
- r.type_changed = 1;
- }
- if (install_new_value (v, new, r.type_changed))
- {
- r.changed = 1;
- v->updated = 0;
- }
- }
- /* We probably should not get children of a dynamic varobj, but
- for which -var-list-children was never invoked. */
- if (varobj_is_dynamic_p (v))
- {
- VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
- VEC (varobj_p) *new = 0;
- int i, children_changed = 0;
- if (v->frozen)
- continue;
- if (!v->dynamic->children_requested)
- {
- int dummy;
- /* If we initially did not have potential children, but
- now we do, consider the varobj as changed.
- Otherwise, if children were never requested, consider
- it as unchanged -- presumably, such varobj is not yet
- expanded in the UI, so we need not bother getting
- it. */
- if (!varobj_has_more (v, 0))
- {
- update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
- &dummy, 0, 0, 0);
- if (varobj_has_more (v, 0))
- r.changed = 1;
- }
- if (r.changed)
- VEC_safe_push (varobj_update_result, result, &r);
- continue;
- }
- /* If update_dynamic_varobj_children returns 0, then we have
- a non-conforming pretty-printer, so we skip it. */
- if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
- &unchanged, &children_changed, 1,
- v->from, v->to))
- {
- if (children_changed || new)
- {
- r.children_changed = 1;
- r.new = new;
- }
- /* Push in reverse order so that the first child is
- popped from the work stack first, and so will be
- added to result first. This does not affect
- correctness, just "nicer". */
- for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
- {
- varobj_p tmp = VEC_index (varobj_p, type_changed, i);
- varobj_update_result r = {0};
- /* Type may change only if value was changed. */
- r.varobj = tmp;
- r.changed = 1;
- r.type_changed = 1;
- r.value_installed = 1;
- VEC_safe_push (varobj_update_result, stack, &r);
- }
- for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
- {
- varobj_p tmp = VEC_index (varobj_p, changed, i);
- varobj_update_result r = {0};
- r.varobj = tmp;
- r.changed = 1;
- r.value_installed = 1;
- VEC_safe_push (varobj_update_result, stack, &r);
- }
- for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
- {
- varobj_p tmp = VEC_index (varobj_p, unchanged, i);
- if (!tmp->frozen)
- {
- varobj_update_result r = {0};
- r.varobj = tmp;
- r.value_installed = 1;
- VEC_safe_push (varobj_update_result, stack, &r);
- }
- }
- if (r.changed || r.children_changed)
- VEC_safe_push (varobj_update_result, result, &r);
- /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
- because NEW has been put into the result vector. */
- VEC_free (varobj_p, changed);
- VEC_free (varobj_p, type_changed);
- VEC_free (varobj_p, unchanged);
- continue;
- }
- }
- /* Push any children. Use reverse order so that the first
- child is popped from the work stack first, and so
- will be added to result first. This does not
- affect correctness, just "nicer". */
- for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
- {
- varobj_p c = VEC_index (varobj_p, v->children, i);
- /* Child may be NULL if explicitly deleted by -var-delete. */
- if (c != NULL && !c->frozen)
- {
- varobj_update_result r = {0};
- r.varobj = c;
- VEC_safe_push (varobj_update_result, stack, &r);
- }
- }
- if (r.changed || r.type_changed)
- VEC_safe_push (varobj_update_result, result, &r);
- }
- VEC_free (varobj_update_result, stack);
- return result;
- }
- /* Helper functions */
- /*
- * Variable object construction/destruction
- */
- static int
- delete_variable (struct cpstack **resultp, struct varobj *var,
- int only_children_p)
- {
- int delcount = 0;
- delete_variable_1 (resultp, &delcount, var,
- only_children_p, 1 /* remove_from_parent_p */ );
- return delcount;
- }
- /* Delete the variable object VAR and its children. */
- /* IMPORTANT NOTE: If we delete a variable which is a child
- and the parent is not removed we dump core. It must be always
- initially called with remove_from_parent_p set. */
- static void
- delete_variable_1 (struct cpstack **resultp, int *delcountp,
- struct varobj *var, int only_children_p,
- int remove_from_parent_p)
- {
- int i;
- /* Delete any children of this variable, too. */
- for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
- {
- varobj_p child = VEC_index (varobj_p, var->children, i);
- if (!child)
- continue;
- if (!remove_from_parent_p)
- child->parent = NULL;
- delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
- }
- VEC_free (varobj_p, var->children);
- /* if we were called to delete only the children we are done here. */
- if (only_children_p)
- return;
- /* Otherwise, add it to the list of deleted ones and proceed to do so. */
- /* If the name is null, this is a temporary variable, that has not
- yet been installed, don't report it, it belongs to the caller... */
- if (var->obj_name != NULL)
- {
- cppush (resultp, xstrdup (var->obj_name));
- *delcountp = *delcountp + 1;
- }
- /* If this variable has a parent, remove it from its parent's list. */
- /* OPTIMIZATION: if the parent of this variable is also being deleted,
- (as indicated by remove_from_parent_p) we don't bother doing an
- expensive list search to find the element to remove when we are
- discarding the list afterwards. */
- if ((remove_from_parent_p) && (var->parent != NULL))
- {
- VEC_replace (varobj_p, var->parent->children, var->index, NULL);
- }
- if (var->obj_name != NULL)
- uninstall_variable (var);
- /* Free memory associated with this variable. */
- free_variable (var);
- }
- /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
- static int
- install_variable (struct varobj *var)
- {
- struct vlist *cv;
- struct vlist *newvl;
- const char *chp;
- unsigned int index = 0;
- unsigned int i = 1;
- for (chp = var->obj_name; *chp; chp++)
- {
- index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
- }
- cv = *(varobj_table + index);
- while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
- cv = cv->next;
- if (cv != NULL)
- error (_("Duplicate variable object name"));
- /* Add varobj to hash table. */
- newvl = xmalloc (sizeof (struct vlist));
- newvl->next = *(varobj_table + index);
- newvl->var = var;
- *(varobj_table + index) = newvl;
- /* If root, add varobj to root list. */
- if (is_root_p (var))
- {
- /* Add to list of root variables. */
- if (rootlist == NULL)
- var->root->next = NULL;
- else
- var->root->next = rootlist;
- rootlist = var->root;
- }
- return 1; /* OK */
- }
- /* Unistall the object VAR. */
- static void
- uninstall_variable (struct varobj *var)
- {
- struct vlist *cv;
- struct vlist *prev;
- struct varobj_root *cr;
- struct varobj_root *prer;
- const char *chp;
- unsigned int index = 0;
- unsigned int i = 1;
- /* Remove varobj from hash table. */
- for (chp = var->obj_name; *chp; chp++)
- {
- index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
- }
- cv = *(varobj_table + index);
- prev = NULL;
- while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
- {
- prev = cv;
- cv = cv->next;
- }
- if (varobjdebug)
- fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
- if (cv == NULL)
- {
- warning
- ("Assertion failed: Could not find variable object \"%s\" to delete",
- var->obj_name);
- return;
- }
- if (prev == NULL)
- *(varobj_table + index) = cv->next;
- else
- prev->next = cv->next;
- xfree (cv);
- /* If root, remove varobj from root list. */
- if (is_root_p (var))
- {
- /* Remove from list of root variables. */
- if (rootlist == var->root)
- rootlist = var->root->next;
- else
- {
- prer = NULL;
- cr = rootlist;
- while ((cr != NULL) && (cr->rootvar != var))
- {
- prer = cr;
- cr = cr->next;
- }
- if (cr == NULL)
- {
- warning (_("Assertion failed: Could not find "
- "varobj \"%s\" in root list"),
- var->obj_name);
- return;
- }
- if (prer == NULL)
- rootlist = NULL;
- else
- prer->next = cr->next;
- }
- }
- }
- /* Create and install a child of the parent of the given name. */
- static struct varobj *
- create_child (struct varobj *parent, int index, char *name)
- {
- struct varobj_item item;
- item.name = name;
- item.value = value_of_child (parent, index);
- return create_child_with_value (parent, index, &item);
- }
- static struct varobj *
- create_child_with_value (struct varobj *parent, int index,
- struct varobj_item *item)
- {
- struct varobj *child;
- char *childs_name;
- child = new_variable ();
- /* NAME is allocated by caller. */
- child->name = item->name;
- child->index = index;
- child->parent = parent;
- child->root = parent->root;
- if (varobj_is_anonymous_child (child))
- childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
- else
- childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
- child->obj_name = childs_name;
- install_variable (child);
- /* Compute the type of the child. Must do this before
- calling install_new_value. */
- if (item->value != NULL)
- /* If the child had no evaluation errors, var->value
- will be non-NULL and contain a valid type. */
- child->type = value_actual_type (item->value, 0, NULL);
- else
- /* Otherwise, we must compute the type. */
- child->type = (*child->root->lang_ops->type_of_child) (child->parent,
- child->index);
- install_new_value (child, item->value, 1);
- return child;
- }
- /*
- * Miscellaneous utility functions.
- */
- /* Allocate memory and initialize a new variable. */
- static struct varobj *
- new_variable (void)
- {
- struct varobj *var;
- var = (struct varobj *) xmalloc (sizeof (struct varobj));
- var->name = NULL;
- var->path_expr = NULL;
- var->obj_name = NULL;
- var->index = -1;
- var->type = NULL;
- var->value = NULL;
- var->num_children = -1;
- var->parent = NULL;
- var->children = NULL;
- var->format = 0;
- var->root = NULL;
- var->updated = 0;
- var->print_value = NULL;
- var->frozen = 0;
- var->not_fetched = 0;
- var->dynamic
- = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
- var->dynamic->children_requested = 0;
- var->from = -1;
- var->to = -1;
- var->dynamic->constructor = 0;
- var->dynamic->pretty_printer = 0;
- var->dynamic->child_iter = 0;
- var->dynamic->saved_item = 0;
- return var;
- }
- /* Allocate memory and initialize a new root variable. */
- static struct varobj *
- new_root_variable (void)
- {
- struct varobj *var = new_variable ();
- var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
- var->root->lang_ops = NULL;
- var->root->exp = NULL;
- var->root->valid_block = NULL;
- var->root->frame = null_frame_id;
- var->root->floating = 0;
- var->root->rootvar = NULL;
- var->root->is_valid = 1;
- return var;
- }
- /* Free any allocated memory associated with VAR. */
- static void
- free_variable (struct varobj *var)
- {
- #if HAVE_PYTHON
- if (var->dynamic->pretty_printer != NULL)
- {
- struct cleanup *cleanup = varobj_ensure_python_env (var);
- Py_XDECREF (var->dynamic->constructor);
- Py_XDECREF (var->dynamic->pretty_printer);
- do_cleanups (cleanup);
- }
- #endif
- varobj_iter_delete (var->dynamic->child_iter);
- varobj_clear_saved_item (var->dynamic);
- value_free (var->value);
- /* Free the expression if this is a root variable. */
- if (is_root_p (var))
- {
- xfree (var->root->exp);
- xfree (var->root);
- }
- xfree (var->name);
- xfree (var->obj_name);
- xfree (var->print_value);
- xfree (var->path_expr);
- xfree (var->dynamic);
- xfree (var);
- }
- static void
- do_free_variable_cleanup (void *var)
- {
- free_variable (var);
- }
- static struct cleanup *
- make_cleanup_free_variable (struct varobj *var)
- {
- return make_cleanup (do_free_variable_cleanup, var);
- }
- /* Return the type of the value that's stored in VAR,
- or that would have being stored there if the
- value were accessible.
- This differs from VAR->type in that VAR->type is always
- the true type of the expession in the source language.
- The return value of this function is the type we're
- actually storing in varobj, and using for displaying
- the values and for comparing previous and new values.
- For example, top-level references are always stripped. */
- struct type *
- varobj_get_value_type (struct varobj *var)
- {
- struct type *type;
- if (var->value)
- type = value_type (var->value);
- else
- type = var->type;
- type = check_typedef (type);
- if (TYPE_CODE (type) == TYPE_CODE_REF)
- type = get_target_type (type);
- type = check_typedef (type);
- return type;
- }
- /* What is the default display for this variable? We assume that
- everything is "natural". Any exceptions? */
- static enum varobj_display_formats
- variable_default_display (struct varobj *var)
- {
- return FORMAT_NATURAL;
- }
- /* FIXME: The following should be generic for any pointer. */
- static void
- cppush (struct cpstack **pstack, char *name)
- {
- struct cpstack *s;
- s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
- s->name = name;
- s->next = *pstack;
- *pstack = s;
- }
- /* FIXME: The following should be generic for any pointer. */
- static char *
- cppop (struct cpstack **pstack)
- {
- struct cpstack *s;
- char *v;
- if ((*pstack)->name == NULL && (*pstack)->next == NULL)
- return NULL;
- s = *pstack;
- v = s->name;
- *pstack = (*pstack)->next;
- xfree (s);
- return v;
- }
- /*
- * Language-dependencies
- */
- /* Common entry points */
- /* Return the number of children for a given variable.
- The result of this function is defined by the language
- implementation. The number of children returned by this function
- is the number of children that the user will see in the variable
- display. */
- static int
- number_of_children (struct varobj *var)
- {
- return (*var->root->lang_ops->number_of_children) (var);
- }
- /* What is the expression for the root varobj VAR? Returns a malloc'd
- string. */
- static char *
- name_of_variable (struct varobj *var)
- {
- return (*var->root->lang_ops->name_of_variable) (var);
- }
- /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
- string. */
- static char *
- name_of_child (struct varobj *var, int index)
- {
- return (*var->root->lang_ops->name_of_child) (var, index);
- }
- /* If frame associated with VAR can be found, switch
- to it and return 1. Otherwise, return 0. */
- static int
- check_scope (struct varobj *var)
- {
- struct frame_info *fi;
- int scope;
- fi = frame_find_by_id (var->root->frame);
- scope = fi != NULL;
- if (fi)
- {
- CORE_ADDR pc = get_frame_pc (fi);
- if (pc < BLOCK_START (var->root->valid_block) ||
- pc >= BLOCK_END (var->root->valid_block))
- scope = 0;
- else
- select_frame (fi);
- }
- return scope;
- }
- /* Helper function to value_of_root. */
- static struct value *
- value_of_root_1 (struct varobj **var_handle)
- {
- struct value *new_val = NULL;
- struct varobj *var = *var_handle;
- int within_scope = 0;
- struct cleanup *back_to;
- /* Only root variables can be updated... */
- if (!is_root_p (var))
- /* Not a root var. */
- return NULL;
- back_to = make_cleanup_restore_current_thread ();
- /* Determine whether the variable is still around. */
- if (var->root->valid_block == NULL || var->root->floating)
- within_scope = 1;
- else if (var->root->thread_id == 0)
- {
- /* The program was single-threaded when the variable object was
- created. Technically, it's possible that the program became
- multi-threaded since then, but we don't support such
- scenario yet. */
- within_scope = check_scope (var);
- }
- else
- {
- ptid_t ptid = thread_id_to_pid (var->root->thread_id);
- if (in_thread_list (ptid))
- {
- switch_to_thread (ptid);
- within_scope = check_scope (var);
- }
- }
- if (within_scope)
- {
- volatile struct gdb_exception except;
- /* We need to catch errors here, because if evaluate
- expression fails we want to just return NULL. */
- TRY_CATCH (except, RETURN_MASK_ERROR)
- {
- new_val = evaluate_expression (var->root->exp);
- }
- }
- do_cleanups (back_to);
- return new_val;
- }
- /* What is the ``struct value *'' of the root variable VAR?
- For floating variable object, evaluation can get us a value
- of different type from what is stored in varobj already. In
- that case:
- - *type_changed will be set to 1
- - old varobj will be freed, and new one will be
- created, with the same name.
- - *var_handle will be set to the new varobj
- Otherwise, *type_changed will be set to 0. */
- static struct value *
- value_of_root (struct varobj **var_handle, int *type_changed)
- {
- struct varobj *var;
- if (var_handle == NULL)
- return NULL;
- var = *var_handle;
- /* This should really be an exception, since this should
- only get called with a root variable. */
- if (!is_root_p (var))
- return NULL;
- if (var->root->floating)
- {
- struct varobj *tmp_var;
- char *old_type, *new_type;
- tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
- USE_SELECTED_FRAME);
- if (tmp_var == NULL)
- {
- return NULL;
- }
- old_type = varobj_get_type (var);
- new_type = varobj_get_type (tmp_var);
- if (strcmp (old_type, new_type) == 0)
- {
- /* The expression presently stored inside var->root->exp
- remembers the locations of local variables relatively to
- the frame where the expression was created (in DWARF location
- button, for example). Naturally, those locations are not
- correct in other frames, so update the expression. */
- struct expression *tmp_exp = var->root->exp;
- var->root->exp = tmp_var->root->exp;
- tmp_var->root->exp = tmp_exp;
- varobj_delete (tmp_var, NULL, 0);
- *type_changed = 0;
- }
- else
- {
- tmp_var->obj_name = xstrdup (var->obj_name);
- tmp_var->from = var->from;
- tmp_var->to = var->to;
- varobj_delete (var, NULL, 0);
- install_variable (tmp_var);
- *var_handle = tmp_var;
- var = *var_handle;
- *type_changed = 1;
- }
- xfree (old_type);
- xfree (new_type);
- }
- else
- {
- *type_changed = 0;
- }
- {
- struct value *value;
- value = value_of_root_1 (var_handle);
- if (var->value == NULL || value == NULL)
- {
- /* For root varobj-s, a NULL value indicates a scoping issue.
- So, nothing to do in terms of checking for mutations. */
- }
- else if (varobj_value_has_mutated (var, value, value_type (value)))
- {
- /* The type has mutated, so the children are no longer valid.
- Just delete them, and tell our caller that the type has
- changed. */
- varobj_delete (var, NULL, 1 /* only_children */);
- var->num_children = -1;
- var->to = -1;
- var->from = -1;
- *type_changed = 1;
- }
- return value;
- }
- }
- /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
- static struct value *
- value_of_child (struct varobj *parent, int index)
- {
- struct value *value;
- value = (*parent->root->lang_ops->value_of_child) (parent, index);
- return value;
- }
- /* GDB already has a command called "value_of_variable". Sigh. */
- static char *
- my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
- {
- if (var->root->is_valid)
- {
- if (var->dynamic->pretty_printer != NULL)
- return varobj_value_get_print_value (var->value, var->format, var);
- return (*var->root->lang_ops->value_of_variable) (var, format);
- }
- else
- return NULL;
- }
- void
- varobj_formatted_print_options (struct value_print_options *opts,
- enum varobj_display_formats format)
- {
- get_formatted_print_options (opts, format_code[(int) format]);
- opts->deref_ref = 0;
- opts->raw = 1;
- }
- char *
- varobj_value_get_print_value (struct value *value,
- enum varobj_display_formats format,
- struct varobj *var)
- {
- struct ui_file *stb;
- struct cleanup *old_chain;
- char *thevalue = NULL;
- struct value_print_options opts;
- struct type *type = NULL;
- long len = 0;
- char *encoding = NULL;
- struct gdbarch *gdbarch = NULL;
- /* Initialize it just to avoid a GCC false warning. */
- CORE_ADDR str_addr = 0;
- int string_print = 0;
- if (value == NULL)
- return NULL;
- stb = mem_fileopen ();
- old_chain = make_cleanup_ui_file_delete (stb);
- gdbarch = get_type_arch (value_type (value));
- #if HAVE_PYTHON
- if (gdb_python_initialized)
- {
- PyObject *value_formatter = var->dynamic->pretty_printer;
- varobj_ensure_python_env (var);
- if (value_formatter)
- {
- /* First check to see if we have any children at all. If so,
- we simply return {...}. */
- if (dynamic_varobj_has_child_method (var))
- {
- do_cleanups (old_chain);
- return xstrdup ("{...}");
- }
- if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
- {
- struct value *replacement;
- PyObject *output = NULL;
- output = apply_varobj_pretty_printer (value_formatter,
- &replacement,
- stb);
- /* If we have string like output ... */
- if (output)
- {
- make_cleanup_py_decref (output);
- /* If this is a lazy string, extract it. For lazy
- strings we always print as a string, so set
- string_print. */
- if (gdbpy_is_lazy_string (output))
- {
- gdbpy_extract_lazy_string (output, &str_addr, &type,
- &len, &encoding);
- make_cleanup (free_current_contents, &encoding);
- string_print = 1;
- }
- else
- {
- /* If it is a regular (non-lazy) string, extract
- it and copy the contents into THEVALUE. If the
- hint says to print it as a string, set
- string_print. Otherwise just return the extracted
- string as a value. */
- char *s = python_string_to_target_string (output);
- if (s)
- {
- char *hint;
- hint = gdbpy_get_display_hint (value_formatter);
- if (hint)
- {
- if (!strcmp (hint, "string"))
- string_print = 1;
- xfree (hint);
- }
- len = strlen (s);
- thevalue = xmemdup (s, len + 1, len + 1);
- type = builtin_type (gdbarch)->builtin_char;
- xfree (s);
- if (!string_print)
- {
- do_cleanups (old_chain);
- return thevalue;
- }
- make_cleanup (xfree, thevalue);
- }
- else
- gdbpy_print_stack ();
- }
- }
- /* If the printer returned a replacement value, set VALUE
- to REPLACEMENT. If there is not a replacement value,
- just use the value passed to this function. */
- if (replacement)
- value = replacement;
- }
- }
- }
- #endif
- varobj_formatted_print_options (&opts, format);
- /* If the THEVALUE has contents, it is a regular string. */
- if (thevalue)
- LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
- else if (string_print)
- /* Otherwise, if string_print is set, and it is not a regular
- string, it is a lazy string. */
- val_print_string (type, encoding, str_addr, len, stb, &opts);
- else
- /* All other cases. */
- common_val_print (value, stb, 0, &opts, current_language);
- thevalue = ui_file_xstrdup (stb, NULL);
- do_cleanups (old_chain);
- return thevalue;
- }
- int
- varobj_editable_p (struct varobj *var)
- {
- struct type *type;
- if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
- return 0;
- type = varobj_get_value_type (var);
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- case TYPE_CODE_ARRAY:
- case TYPE_CODE_FUNC:
- case TYPE_CODE_METHOD:
- return 0;
- break;
- default:
- return 1;
- break;
- }
- }
- /* Call VAR's value_is_changeable_p language-specific callback. */
- int
- varobj_value_is_changeable_p (struct varobj *var)
- {
- return var->root->lang_ops->value_is_changeable_p (var);
- }
- /* Return 1 if that varobj is floating, that is is always evaluated in the
- selected frame, and not bound to thread/frame. Such variable objects
- are created using '@' as frame specifier to -var-create. */
- int
- varobj_floating_p (struct varobj *var)
- {
- return var->root->floating;
- }
- /* Implement the "value_is_changeable_p" varobj callback for most
- languages. */
- int
- varobj_default_value_is_changeable_p (struct varobj *var)
- {
- int r;
- struct type *type;
- if (CPLUS_FAKE_CHILD (var))
- return 0;
- type = varobj_get_value_type (var);
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- case TYPE_CODE_ARRAY:
- r = 0;
- break;
- default:
- r = 1;
- }
- return r;
- }
- /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
- with an arbitrary caller supplied DATA pointer. */
- void
- all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
- {
- struct varobj_root *var_root, *var_root_next;
- /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
- for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
- {
- var_root_next = var_root->next;
- (*func) (var_root->rootvar, data);
- }
- }
- /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
- defined on globals. It is a helper for varobj_invalidate.
- This function is called after changing the symbol file, in this case the
- pointers to "struct type" stored by the varobj are no longer valid. All
- varobj must be either re-evaluated, or marked as invalid here. */
- static void
- varobj_invalidate_iter (struct varobj *var, void *unused)
- {
- /* global and floating var must be re-evaluated. */
- if (var->root->floating || var->root->valid_block == NULL)
- {
- struct varobj *tmp_var;
- /* Try to create a varobj with same expression. If we succeed
- replace the old varobj, otherwise invalidate it. */
- tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
- USE_CURRENT_FRAME);
- if (tmp_var != NULL)
- {
- tmp_var->obj_name = xstrdup (var->obj_name);
- varobj_delete (var, NULL, 0);
- install_variable (tmp_var);
- }
- else
- var->root->is_valid = 0;
- }
- else /* locals must be invalidated. */
- var->root->is_valid = 0;
- }
- /* Invalidate the varobjs that are tied to locals and re-create the ones that
- are defined on globals.
- Invalidated varobjs will be always printed in_scope="invalid". */
- void
- varobj_invalidate (void)
- {
- all_root_varobjs (varobj_invalidate_iter, NULL);
- }
- extern void _initialize_varobj (void);
- void
- _initialize_varobj (void)
- {
- int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
- varobj_table = xmalloc (sizeof_table);
- memset (varobj_table, 0, sizeof_table);
- add_setshow_zuinteger_cmd ("varobj", class_maintenance,
- &varobjdebug,
- _("Set varobj debugging."),
- _("Show varobj debugging."),
- _("When non-zero, varobj debugging is enabled."),
- NULL, show_varobjdebug,
- &setdebuglist, &showdebuglist);
- }