- /* GDB-specific functions for operating on agent expressions.
- Copyright (C) 1998-2015 Free Software Foundation, Inc.
- This file is part of GDB.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
- #include "defs.h"
- #include "symtab.h"
- #include "symfile.h"
- #include "gdbtypes.h"
- #include "language.h"
- #include "value.h"
- #include "expression.h"
- #include "command.h"
- #include "gdbcmd.h"
- #include "frame.h"
- #include "target.h"
- #include "ax.h"
- #include "ax-gdb.h"
- #include "block.h"
- #include "regcache.h"
- #include "user-regs.h"
- #include "dictionary.h"
- #include "breakpoint.h"
- #include "tracepoint.h"
- #include "cp-support.h"
- #include "arch-utils.h"
- #include "cli/cli-utils.h"
- #include "linespec.h"
- #include "objfiles.h"
- #include "valprint.h"
- #include "c-lang.h"
- #include "format.h"
- /* To make sense of this file, you should read doc/agentexpr.texi.
- Then look at the types and enums in ax-gdb.h. For the code itself,
- look at gen_expr, towards the bottom; that's the main function that
- looks at the GDB expressions and calls everything else to generate
- code.
- I'm beginning to wonder whether it wouldn't be nicer to internally
- generate trees, with types, and then spit out the bytecode in
- linear form afterwards; we could generate fewer `swap', `ext', and
- `zero_ext' bytecodes that way; it would make good constant folding
- easier, too. But at the moment, I think we should be willing to
- pay for the simplicity of this code with less-than-optimal bytecode
- strings.
- Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
- /* Prototypes for local functions. */
- /* There's a standard order to the arguments of these functions:
- union exp_element ** --- pointer into expression
- struct agent_expr * --- agent expression buffer to generate code into
- struct axs_value * --- describes value left on top of stack */
- static struct value *const_var_ref (struct symbol *var);
- static struct value *const_expr (union exp_element **pc);
- static struct value *maybe_const_expr (union exp_element **pc);
- static void gen_traced_pop (struct gdbarch *, struct agent_expr *,
- struct axs_value *);
- static void gen_sign_extend (struct agent_expr *, struct type *);
- static void gen_extend (struct agent_expr *, struct type *);
- static void gen_fetch (struct agent_expr *, struct type *);
- static void gen_left_shift (struct agent_expr *, int);
- static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
- static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
- static void gen_offset (struct agent_expr *ax, int offset);
- static void gen_sym_offset (struct agent_expr *, struct symbol *);
- static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
- struct axs_value *value, struct symbol *var);
- static void gen_int_literal (struct agent_expr *ax,
- struct axs_value *value,
- LONGEST k, struct type *type);
- static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
- struct axs_value *value);
- static int type_wider_than (struct type *type1, struct type *type2);
- static struct type *max_type (struct type *type1, struct type *type2);
- static void gen_conversion (struct agent_expr *ax,
- struct type *from, struct type *to);
- static int is_nontrivial_conversion (struct type *from, struct type *to);
- static void gen_usual_arithmetic (struct expression *exp,
- struct agent_expr *ax,
- struct axs_value *value1,
- struct axs_value *value2);
- static void gen_integral_promotions (struct expression *exp,
- struct agent_expr *ax,
- struct axs_value *value);
- static void gen_cast (struct agent_expr *ax,
- struct axs_value *value, struct type *type);
- static void gen_scale (struct agent_expr *ax,
- enum agent_op op, struct type *type);
- static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
- struct axs_value *value1, struct axs_value *value2);
- static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
- struct axs_value *value1, struct axs_value *value2);
- static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
- struct axs_value *value1, struct axs_value *value2,
- struct type *result_type);
- static void gen_binop (struct agent_expr *ax,
- struct axs_value *value,
- struct axs_value *value1,
- struct axs_value *value2,
- enum agent_op op,
- enum agent_op op_unsigned, int may_carry, char *name);
- static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
- struct type *result_type);
- static void gen_complement (struct agent_expr *ax, struct axs_value *value);
- static void gen_deref (struct agent_expr *, struct axs_value *);
- static void gen_address_of (struct agent_expr *, struct axs_value *);
- static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
- struct axs_value *value,
- struct type *type, int start, int end);
- static void gen_primitive_field (struct expression *exp,
- struct agent_expr *ax,
- struct axs_value *value,
- int offset, int fieldno, struct type *type);
- static int gen_struct_ref_recursive (struct expression *exp,
- struct agent_expr *ax,
- struct axs_value *value,
- char *field, int offset,
- struct type *type);
- static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
- struct axs_value *value,
- char *field,
- char *operator_name, char *operand_name);
- static void gen_static_field (struct gdbarch *gdbarch,
- struct agent_expr *ax, struct axs_value *value,
- struct type *type, int fieldno);
- static void gen_repeat (struct expression *exp, union exp_element **pc,
- struct agent_expr *ax, struct axs_value *value);
- static void gen_sizeof (struct expression *exp, union exp_element **pc,
- struct agent_expr *ax, struct axs_value *value,
- struct type *size_type);
- static void gen_expr_binop_rest (struct expression *exp,
- enum exp_opcode op, union exp_element **pc,
- struct agent_expr *ax,
- struct axs_value *value,
- struct axs_value *value1,
- struct axs_value *value2);
- static void agent_command (char *exp, int from_tty);
- /* Detecting constant expressions. */
- /* If the variable reference at *PC is a constant, return its value.
- Otherwise, return zero.
- Hey, Wally! How can a variable reference be a constant?
- Well, Beav, this function really handles the OP_VAR_VALUE operator,
- not specifically variable references. GDB uses OP_VAR_VALUE to
- refer to any kind of symbolic reference: function names, enum
- elements, and goto labels are all handled through the OP_VAR_VALUE
- operator, even though they're constants. It makes sense given the
- situation.
- Gee, Wally, don'cha wonder sometimes if data representations that
- subvert commonly accepted definitions of terms in favor of heavily
- context-specific interpretations are really just a tool of the
- programming hegemony to preserve their power and exclude the
- proletariat? */
- static struct value *
- const_var_ref (struct symbol *var)
- {
- struct type *type = SYMBOL_TYPE (var);
- switch (SYMBOL_CLASS (var))
- {
- case LOC_CONST:
- return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
- case LOC_LABEL:
- return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
- default:
- return 0;
- }
- }
- /* If the expression starting at *PC has a constant value, return it.
- Otherwise, return zero. If we return a value, then *PC will be
- advanced to the end of it. If we return zero, *PC could be
- anywhere. */
- static struct value *
- const_expr (union exp_element **pc)
- {
- enum exp_opcode op = (*pc)->opcode;
- struct value *v1;
- switch (op)
- {
- case OP_LONG:
- {
- struct type *type = (*pc)[1].type;
- LONGEST k = (*pc)[2].longconst;
- (*pc) += 4;
- return value_from_longest (type, k);
- }
- case OP_VAR_VALUE:
- {
- struct value *v = const_var_ref ((*pc)[2].symbol);
- (*pc) += 4;
- return v;
- }
- /* We could add more operators in here. */
- case UNOP_NEG:
- (*pc)++;
- v1 = const_expr (pc);
- if (v1)
- return value_neg (v1);
- else
- return 0;
- default:
- return 0;
- }
- }
- /* Like const_expr, but guarantee also that *PC is undisturbed if the
- expression is not constant. */
- static struct value *
- maybe_const_expr (union exp_element **pc)
- {
- union exp_element *tentative_pc = *pc;
- struct value *v = const_expr (&tentative_pc);
- /* If we got a value, then update the real PC. */
- if (v)
- *pc = tentative_pc;
- return v;
- }
- /* Generating bytecode from GDB expressions: general assumptions */
- /* Here are a few general assumptions made throughout the code; if you
- want to make a change that contradicts one of these, then you'd
- better scan things pretty thoroughly.
- - We assume that all values occupy one stack element. For example,
- sometimes we'll swap to get at the left argument to a binary
- operator. If we decide that void values should occupy no stack
- elements, or that synthetic arrays (whose size is determined at
- run time, created by the `@' operator) should occupy two stack
- elements (address and length), then this will cause trouble.
- - We assume the stack elements are infinitely wide, and that we
- don't have to worry what happens if the user requests an
- operation that is wider than the actual interpreter's stack.
- That is, it's up to the interpreter to handle directly all the
- integer widths the user has access to. (Woe betide the language
- with bignums!)
- - We don't support side effects. Thus, we don't have to worry about
- GCC's generalized lvalues, function calls, etc.
- - We don't support floating point. Many places where we switch on
- some type don't bother to include cases for floating point; there
- may be even more subtle ways this assumption exists. For
- example, the arguments to % must be integers.
- - We assume all subexpressions have a static, unchanging type. If
- we tried to support convenience variables, this would be a
- problem.
- - All values on the stack should always be fully zero- or
- sign-extended.
- (I wasn't sure whether to choose this or its opposite --- that
- only addresses are assumed extended --- but it turns out that
- neither convention completely eliminates spurious extend
- operations (if everything is always extended, then you have to
- extend after add, because it could overflow; if nothing is
- extended, then you end up producing extends whenever you change
- sizes), and this is simpler.) */
- /* Scan for all static fields in the given class, including any base
- classes, and generate tracing bytecodes for each. */
- static void
- gen_trace_static_fields (struct gdbarch *gdbarch,
- struct agent_expr *ax,
- struct type *type)
- {
- int i, nbases = TYPE_N_BASECLASSES (type);
- struct axs_value value;
- CHECK_TYPEDEF (type);
- for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
- {
- if (field_is_static (&TYPE_FIELD (type, i)))
- {
- gen_static_field (gdbarch, ax, &value, type, i);
- if (value.optimized_out)
- continue;
- switch (value.kind)
- {
- case axs_lvalue_memory:
- {
- /* Initialize the TYPE_LENGTH if it is a typedef. */
- check_typedef (value.type);
- ax_const_l (ax, TYPE_LENGTH (value.type));
- ax_simple (ax, aop_trace);
- }
- break;
- case axs_lvalue_register:
- /* We don't actually need the register's value to be pushed,
- just note that we need it to be collected. */
- ax_reg_mask (ax, value.u.reg);
- default:
- break;
- }
- }
- }
- /* Now scan through base classes recursively. */
- for (i = 0; i < nbases; i++)
- {
- struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
- gen_trace_static_fields (gdbarch, ax, basetype);
- }
- }
- /* Trace the lvalue on the stack, if it needs it. In either case, pop
- the value. Useful on the left side of a comma, and at the end of
- an expression being used for tracing. */
- static void
- gen_traced_pop (struct gdbarch *gdbarch,
- struct agent_expr *ax, struct axs_value *value)
- {
- int string_trace = 0;
- if (ax->trace_string
- && TYPE_CODE (value->type) == TYPE_CODE_PTR
- && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)),
- 's'))
- string_trace = 1;
- if (ax->tracing)
- switch (value->kind)
- {
- case axs_rvalue:
- if (string_trace)
- {
- ax_const_l (ax, ax->trace_string);
- ax_simple (ax, aop_tracenz);
- }
- else
- /* We don't trace rvalues, just the lvalues necessary to
- produce them. So just dispose of this value. */
- ax_simple (ax, aop_pop);
- break;
- case axs_lvalue_memory:
- {
- if (string_trace)
- ax_simple (ax, aop_dup);
- /* Initialize the TYPE_LENGTH if it is a typedef. */
- check_typedef (value->type);
- /* There's no point in trying to use a trace_quick bytecode
- here, since "trace_quick SIZE pop" is three bytes, whereas
- "const8 SIZE trace" is also three bytes, does the same
- thing, and the simplest code which generates that will also
- work correctly for objects with large sizes. */
- ax_const_l (ax, TYPE_LENGTH (value->type));
- ax_simple (ax, aop_trace);
- if (string_trace)
- {
- ax_simple (ax, aop_ref32);
- ax_const_l (ax, ax->trace_string);
- ax_simple (ax, aop_tracenz);
- }
- }
- break;
- case axs_lvalue_register:
- /* We don't actually need the register's value to be on the
- stack, and the target will get heartburn if the register is
- larger than will fit in a stack, so just mark it for
- collection and be done with it. */
- ax_reg_mask (ax, value->u.reg);
- /* But if the register points to a string, assume the value
- will fit on the stack and push it anyway. */
- if (string_trace)
- {
- ax_reg (ax, value->u.reg);
- ax_const_l (ax, ax->trace_string);
- ax_simple (ax, aop_tracenz);
- }
- break;
- }
- else
- /* If we're not tracing, just pop the value. */
- ax_simple (ax, aop_pop);
- /* To trace C++ classes with static fields stored elsewhere. */
- if (ax->tracing
- && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
- || TYPE_CODE (value->type) == TYPE_CODE_UNION))
- gen_trace_static_fields (gdbarch, ax, value->type);
- }
- /* Generating bytecode from GDB expressions: helper functions */
- /* Assume that the lower bits of the top of the stack is a value of
- type TYPE, and the upper bits are zero. Sign-extend if necessary. */
- static void
- gen_sign_extend (struct agent_expr *ax, struct type *type)
- {
- /* Do we need to sign-extend this? */
- if (!TYPE_UNSIGNED (type))
- ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
- }
- /* Assume the lower bits of the top of the stack hold a value of type
- TYPE, and the upper bits are garbage. Sign-extend or truncate as
- needed. */
- static void
- gen_extend (struct agent_expr *ax, struct type *type)
- {
- int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
- /* I just had to. */
- ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
- }
- /* Assume that the top of the stack contains a value of type "pointer
- to TYPE"; generate code to fetch its value. Note that TYPE is the
- target type, not the pointer type. */
- static void
- gen_fetch (struct agent_expr *ax, struct type *type)
- {
- if (ax->tracing)
- {
- /* Record the area of memory we're about to fetch. */
- ax_trace_quick (ax, TYPE_LENGTH (type));
- }
- if (TYPE_CODE (type) == TYPE_CODE_RANGE)
- type = TYPE_TARGET_TYPE (type);
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_PTR:
- case TYPE_CODE_REF:
- case TYPE_CODE_ENUM:
- case TYPE_CODE_INT:
- case TYPE_CODE_CHAR:
- case TYPE_CODE_BOOL:
- /* It's a scalar value, so we know how to dereference it. How
- many bytes long is it? */
- switch (TYPE_LENGTH (type))
- {
- case 8 / TARGET_CHAR_BIT:
- ax_simple (ax, aop_ref8);
- break;
- case 16 / TARGET_CHAR_BIT:
- ax_simple (ax, aop_ref16);
- break;
- case 32 / TARGET_CHAR_BIT:
- ax_simple (ax, aop_ref32);
- break;
- case 64 / TARGET_CHAR_BIT:
- ax_simple (ax, aop_ref64);
- break;
- /* Either our caller shouldn't have asked us to dereference
- that pointer (other code's fault), or we're not
- implementing something we should be (this code's fault).
- In any case, it's a bug the user shouldn't see. */
- default:
- internal_error (__FILE__, __LINE__,
- _("gen_fetch: strange size"));
- }
- gen_sign_extend (ax, type);
- break;
- default:
- /* Our caller requested us to dereference a pointer from an unsupported
- type. Error out and give callers a chance to handle the failure
- gracefully. */
- error (_("gen_fetch: Unsupported type code `%s'."),
- TYPE_NAME (type));
- }
- }
- /* Generate code to left shift the top of the stack by DISTANCE bits, or
- right shift it by -DISTANCE bits if DISTANCE < 0. This generates
- unsigned (logical) right shifts. */
- static void
- gen_left_shift (struct agent_expr *ax, int distance)
- {
- if (distance > 0)
- {
- ax_const_l (ax, distance);
- ax_simple (ax, aop_lsh);
- }
- else if (distance < 0)
- {
- ax_const_l (ax, -distance);
- ax_simple (ax, aop_rsh_unsigned);
- }
- }
- /* Generating bytecode from GDB expressions: symbol references */
- /* Generate code to push the base address of the argument portion of
- the top stack frame. */
- static void
- gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
- {
- int frame_reg;
- LONGEST frame_offset;
- gdbarch_virtual_frame_pointer (gdbarch,
- ax->scope, &frame_reg, &frame_offset);
- ax_reg (ax, frame_reg);
- gen_offset (ax, frame_offset);
- }
- /* Generate code to push the base address of the locals portion of the
- top stack frame. */
- static void
- gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
- {
- int frame_reg;
- LONGEST frame_offset;
- gdbarch_virtual_frame_pointer (gdbarch,
- ax->scope, &frame_reg, &frame_offset);
- ax_reg (ax, frame_reg);
- gen_offset (ax, frame_offset);
- }
- /* Generate code to add OFFSET to the top of the stack. Try to
- generate short and readable code. We use this for getting to
- variables on the stack, and structure members. If we were
- programming in ML, it would be clearer why these are the same
- thing. */
- static void
- gen_offset (struct agent_expr *ax, int offset)
- {
- /* It would suffice to simply push the offset and add it, but this
- makes it easier to read positive and negative offsets in the
- bytecode. */
- if (offset > 0)
- {
- ax_const_l (ax, offset);
- ax_simple (ax, aop_add);
- }
- else if (offset < 0)
- {
- ax_const_l (ax, -offset);
- ax_simple (ax, aop_sub);
- }
- }
- /* In many cases, a symbol's value is the offset from some other
- address (stack frame, base register, etc.) Generate code to add
- VAR's value to the top of the stack. */
- static void
- gen_sym_offset (struct agent_expr *ax, struct symbol *var)
- {
- gen_offset (ax, SYMBOL_VALUE (var));
- }
- /* Generate code for a variable reference to AX. The variable is the
- symbol VAR. Set VALUE to describe the result. */
- static void
- gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
- struct axs_value *value, struct symbol *var)
- {
- /* Dereference any typedefs. */
- value->type = check_typedef (SYMBOL_TYPE (var));
- value->optimized_out = 0;
- if (SYMBOL_COMPUTED_OPS (var) != NULL)
- {
- SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
- return;
- }
- /* I'm imitating the code in read_var_value. */
- switch (SYMBOL_CLASS (var))
- {
- case LOC_CONST: /* A constant, like an enum value. */
- ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
- value->kind = axs_rvalue;
- break;
- case LOC_LABEL: /* A goto label, being used as a value. */
- ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
- value->kind = axs_rvalue;
- break;
- case LOC_CONST_BYTES:
- internal_error (__FILE__, __LINE__,
- _("gen_var_ref: LOC_CONST_BYTES "
- "symbols are not supported"));
- /* Variable at a fixed location in memory. Easy. */
- case LOC_STATIC:
- /* Push the address of the variable. */
- ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
- value->kind = axs_lvalue_memory;
- break;
- case LOC_ARG: /* var lives in argument area of frame */
- gen_frame_args_address (gdbarch, ax);
- gen_sym_offset (ax, var);
- value->kind = axs_lvalue_memory;
- break;
- case LOC_REF_ARG: /* As above, but the frame slot really
- holds the address of the variable. */
- gen_frame_args_address (gdbarch, ax);
- gen_sym_offset (ax, var);
- /* Don't assume any particular pointer size. */
- gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
- value->kind = axs_lvalue_memory;
- break;
- case LOC_LOCAL: /* var lives in locals area of frame */
- gen_frame_locals_address (gdbarch, ax);
- gen_sym_offset (ax, var);
- value->kind = axs_lvalue_memory;
- break;
- case LOC_TYPEDEF:
- error (_("Cannot compute value of typedef `%s'."),
- SYMBOL_PRINT_NAME (var));
- break;
- case LOC_BLOCK:
- ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
- value->kind = axs_rvalue;
- break;
- case LOC_REGISTER:
- /* Don't generate any code at all; in the process of treating
- this as an lvalue or rvalue, the caller will generate the
- right code. */
- value->kind = axs_lvalue_register;
- value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
- break;
- /* A lot like LOC_REF_ARG, but the pointer lives directly in a
- register, not on the stack. Simpler than LOC_REGISTER
- because it's just like any other case where the thing
- has a real address. */
- case LOC_REGPARM_ADDR:
- ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
- value->kind = axs_lvalue_memory;
- break;
- case LOC_UNRESOLVED:
- {
- struct bound_minimal_symbol msym
- = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
- if (!msym.minsym)
- error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
- /* Push the address of the variable. */
- ax_const_l (ax, BMSYMBOL_VALUE_ADDRESS (msym));
- value->kind = axs_lvalue_memory;
- }
- break;
- case LOC_COMPUTED:
- gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
- case LOC_OPTIMIZED_OUT:
- /* Flag this, but don't say anything; leave it up to callers to
- warn the user. */
- value->optimized_out = 1;
- break;
- default:
- error (_("Cannot find value of botched symbol `%s'."),
- SYMBOL_PRINT_NAME (var));
- break;
- }
- }
- /* Generating bytecode from GDB expressions: literals */
- static void
- gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
- struct type *type)
- {
- ax_const_l (ax, k);
- value->kind = axs_rvalue;
- value->type = check_typedef (type);
- }
- /* Generating bytecode from GDB expressions: unary conversions, casts */
- /* Take what's on the top of the stack (as described by VALUE), and
- try to make an rvalue out of it. Signal an error if we can't do
- that. */
- void
- require_rvalue (struct agent_expr *ax, struct axs_value *value)
- {
- /* Only deal with scalars, structs and such may be too large
- to fit in a stack entry. */
- value->type = check_typedef (value->type);
- if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
- || TYPE_CODE (value->type) == TYPE_CODE_STRUCT
- || TYPE_CODE (value->type) == TYPE_CODE_UNION
- || TYPE_CODE (value->type) == TYPE_CODE_FUNC)
- error (_("Value not scalar: cannot be an rvalue."));
- switch (value->kind)
- {
- case axs_rvalue:
- /* It's already an rvalue. */
- break;
- case axs_lvalue_memory:
- /* The top of stack is the address of the object. Dereference. */
- gen_fetch (ax, value->type);
- break;
- case axs_lvalue_register:
- /* There's nothing on the stack, but value->u.reg is the
- register number containing the value.
- When we add floating-point support, this is going to have to
- change. What about SPARC register pairs, for example? */
- ax_reg (ax, value->u.reg);
- gen_extend (ax, value->type);
- break;
- }
- value->kind = axs_rvalue;
- }
- /* Assume the top of the stack is described by VALUE, and perform the
- usual unary conversions. This is motivated by ANSI 6.2.2, but of
- course GDB expressions are not ANSI; they're the mishmash union of
- a bunch of languages. Rah.
- NOTE! This function promises to produce an rvalue only when the
- incoming value is of an appropriate type. In other words, the
- consumer of the value this function produces may assume the value
- is an rvalue only after checking its type.
- The immediate issue is that if the user tries to use a structure or
- union as an operand of, say, the `+' operator, we don't want to try
- to convert that structure to an rvalue; require_rvalue will bomb on
- structs and unions. Rather, we want to simply pass the struct
- lvalue through unchanged, and let `+' raise an error. */
- static void
- gen_usual_unary (struct expression *exp, struct agent_expr *ax,
- struct axs_value *value)
- {
- /* We don't have to generate any code for the usual integral
- conversions, since values are always represented as full-width on
- the stack. Should we tweak the type? */
- /* Some types require special handling. */
- switch (TYPE_CODE (value->type))
- {
- /* Functions get converted to a pointer to the function. */
- case TYPE_CODE_FUNC:
- value->type = lookup_pointer_type (value->type);
- value->kind = axs_rvalue; /* Should always be true, but just in case. */
- break;
- /* Arrays get converted to a pointer to their first element, and
- are no longer an lvalue. */
- case TYPE_CODE_ARRAY:
- {
- struct type *elements = TYPE_TARGET_TYPE (value->type);
- value->type = lookup_pointer_type (elements);
- value->kind = axs_rvalue;
- /* We don't need to generate any code; the address of the array
- is also the address of its first element. */
- }
- break;
- /* Don't try to convert structures and unions to rvalues. Let the
- consumer signal an error. */
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- return;
- }
- /* If the value is an lvalue, dereference it. */
- require_rvalue (ax, value);
- }
- /* Return non-zero iff the type TYPE1 is considered "wider" than the
- type TYPE2, according to the rules described in gen_usual_arithmetic. */
- static int
- type_wider_than (struct type *type1, struct type *type2)
- {
- return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
- || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
- && TYPE_UNSIGNED (type1)
- && !TYPE_UNSIGNED (type2)));
- }
- /* Return the "wider" of the two types TYPE1 and TYPE2. */
- static struct type *
- max_type (struct type *type1, struct type *type2)
- {
- return type_wider_than (type1, type2) ? type1 : type2;
- }
- /* Generate code to convert a scalar value of type FROM to type TO. */
- static void
- gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
- {
- /* Perhaps there is a more graceful way to state these rules. */
- /* If we're converting to a narrower type, then we need to clear out
- the upper bits. */
- if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
- gen_extend (ax, from);
- /* If the two values have equal width, but different signednesses,
- then we need to extend. */
- else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
- {
- if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
- gen_extend (ax, to);
- }
- /* If we're converting to a wider type, and becoming unsigned, then
- we need to zero out any possible sign bits. */
- else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
- {
- if (TYPE_UNSIGNED (to))
- gen_extend (ax, to);
- }
- }
- /* Return non-zero iff the type FROM will require any bytecodes to be
- emitted to be converted to the type TO. */
- static int
- is_nontrivial_conversion (struct type *from, struct type *to)
- {
- struct agent_expr *ax = new_agent_expr (NULL, 0);
- int nontrivial;
- /* Actually generate the code, and see if anything came out. At the
- moment, it would be trivial to replicate the code in
- gen_conversion here, but in the future, when we're supporting
- floating point and the like, it may not be. Doing things this
- way allows this function to be independent of the logic in
- gen_conversion. */
- gen_conversion (ax, from, to);
- nontrivial = ax->len > 0;
- free_agent_expr (ax);
- return nontrivial;
- }
- /* Generate code to perform the "usual arithmetic conversions" (ANSI C
- 6.2.1.5) for the two operands of an arithmetic operator. This
- effectively finds a "least upper bound" type for the two arguments,
- and promotes each argument to that type. *VALUE1 and *VALUE2
- describe the values as they are passed in, and as they are left. */
- static void
- gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
- struct axs_value *value1, struct axs_value *value2)
- {
- /* Do the usual binary conversions. */
- if (TYPE_CODE (value1->type) == TYPE_CODE_INT
- && TYPE_CODE (value2->type) == TYPE_CODE_INT)
- {
- /* The ANSI integral promotions seem to work this way: Order the
- integer types by size, and then by signedness: an n-bit
- unsigned type is considered "wider" than an n-bit signed
- type. Promote to the "wider" of the two types, and always
- promote at least to int. */
- struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
- max_type (value1->type, value2->type));
- /* Deal with value2, on the top of the stack. */
- gen_conversion (ax, value2->type, target);
- /* Deal with value1, not on the top of the stack. Don't
- generate the `swap' instructions if we're not actually going
- to do anything. */
- if (is_nontrivial_conversion (value1->type, target))
- {
- ax_simple (ax, aop_swap);
- gen_conversion (ax, value1->type, target);
- ax_simple (ax, aop_swap);
- }
- value1->type = value2->type = check_typedef (target);
- }
- }
- /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
- the value on the top of the stack, as described by VALUE. Assume
- the value has integral type. */
- static void
- gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
- struct axs_value *value)
- {
- const struct builtin_type *builtin = builtin_type (exp->gdbarch);
- if (!type_wider_than (value->type, builtin->builtin_int))
- {
- gen_conversion (ax, value->type, builtin->builtin_int);
- value->type = builtin->builtin_int;
- }
- else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
- {
- gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
- value->type = builtin->builtin_unsigned_int;
- }
- }
- /* Generate code for a cast to TYPE. */
- static void
- gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
- {
- /* GCC does allow casts to yield lvalues, so this should be fixed
- before merging these changes into the trunk. */
- require_rvalue (ax, value);
- /* Dereference typedefs. */
- type = check_typedef (type);
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_PTR:
- case TYPE_CODE_REF:
- /* It's implementation-defined, and I'll bet this is what GCC
- does. */
- break;
- case TYPE_CODE_ARRAY:
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- case TYPE_CODE_FUNC:
- error (_("Invalid type cast: intended type must be scalar."));
- case TYPE_CODE_ENUM:
- case TYPE_CODE_BOOL:
- /* We don't have to worry about the size of the value, because
- all our integral values are fully sign-extended, and when
- casting pointers we can do anything we like. Is there any
- way for us to know what GCC actually does with a cast like
- this? */
- break;
- case TYPE_CODE_INT:
- gen_conversion (ax, value->type, type);
- break;
- case TYPE_CODE_VOID:
- /* We could pop the value, and rely on everyone else to check
- the type and notice that this value doesn't occupy a stack
- slot. But for now, leave the value on the stack, and
- preserve the "value == stack element" assumption. */
- break;
- default:
- error (_("Casts to requested type are not yet implemented."));
- }
- value->type = type;
- }
- /* Generating bytecode from GDB expressions: arithmetic */
- /* Scale the integer on the top of the stack by the size of the target
- of the pointer type TYPE. */
- static void
- gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
- {
- struct type *element = TYPE_TARGET_TYPE (type);
- if (TYPE_LENGTH (element) != 1)
- {
- ax_const_l (ax, TYPE_LENGTH (element));
- ax_simple (ax, op);
- }
- }
- /* Generate code for pointer arithmetic PTR + INT. */
- static void
- gen_ptradd (struct agent_expr *ax, struct axs_value *value,
- struct axs_value *value1, struct axs_value *value2)
- {
- gdb_assert (pointer_type (value1->type));
- gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
- gen_scale (ax, aop_mul, value1->type);
- ax_simple (ax, aop_add);
- gen_extend (ax, value1->type); /* Catch overflow. */
- value->type = value1->type;
- value->kind = axs_rvalue;
- }
- /* Generate code for pointer arithmetic PTR - INT. */
- static void
- gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
- struct axs_value *value1, struct axs_value *value2)
- {
- gdb_assert (pointer_type (value1->type));
- gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
- gen_scale (ax, aop_mul, value1->type);
- ax_simple (ax, aop_sub);
- gen_extend (ax, value1->type); /* Catch overflow. */
- value->type = value1->type;
- value->kind = axs_rvalue;
- }
- /* Generate code for pointer arithmetic PTR - PTR. */
- static void
- gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
- struct axs_value *value1, struct axs_value *value2,
- struct type *result_type)
- {
- gdb_assert (pointer_type (value1->type));
- gdb_assert (pointer_type (value2->type));
- if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
- != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
- error (_("\
- First argument of `-' is a pointer, but second argument is neither\n\
- an integer nor a pointer of the same type."));
- ax_simple (ax, aop_sub);
- gen_scale (ax, aop_div_unsigned, value1->type);
- value->type = result_type;
- value->kind = axs_rvalue;
- }
- static void
- gen_equal (struct agent_expr *ax, struct axs_value *value,
- struct axs_value *value1, struct axs_value *value2,
- struct type *result_type)
- {
- if (pointer_type (value1->type) || pointer_type (value2->type))
- ax_simple (ax, aop_equal);
- else
- gen_binop (ax, value, value1, value2,
- aop_equal, aop_equal, 0, "equal");
- value->type = result_type;
- value->kind = axs_rvalue;
- }
- static void
- gen_less (struct agent_expr *ax, struct axs_value *value,
- struct axs_value *value1, struct axs_value *value2,
- struct type *result_type)
- {
- if (pointer_type (value1->type) || pointer_type (value2->type))
- ax_simple (ax, aop_less_unsigned);
- else
- gen_binop (ax, value, value1, value2,
- aop_less_signed, aop_less_unsigned, 0, "less than");
- value->type = result_type;
- value->kind = axs_rvalue;
- }
- /* Generate code for a binary operator that doesn't do pointer magic.
- We set VALUE to describe the result value; we assume VALUE1 and
- VALUE2 describe the two operands, and that they've undergone the
- usual binary conversions. MAY_CARRY should be non-zero iff the
- result needs to be extended. NAME is the English name of the
- operator, used in error messages */
- static void
- gen_binop (struct agent_expr *ax, struct axs_value *value,
- struct axs_value *value1, struct axs_value *value2,
- enum agent_op op, enum agent_op op_unsigned,
- int may_carry, char *name)
- {
- /* We only handle INT op INT. */
- if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
- || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
- error (_("Invalid combination of types in %s."), name);
- ax_simple (ax,
- TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
- if (may_carry)
- gen_extend (ax, value1->type); /* catch overflow */
- value->type = value1->type;
- value->kind = axs_rvalue;
- }
- static void
- gen_logical_not (struct agent_expr *ax, struct axs_value *value,
- struct type *result_type)
- {
- if (TYPE_CODE (value->type) != TYPE_CODE_INT
- && TYPE_CODE (value->type) != TYPE_CODE_PTR)
- error (_("Invalid type of operand to `!'."));
- ax_simple (ax, aop_log_not);
- value->type = result_type;
- }
- static void
- gen_complement (struct agent_expr *ax, struct axs_value *value)
- {
- if (TYPE_CODE (value->type) != TYPE_CODE_INT)
- error (_("Invalid type of operand to `~'."));
- ax_simple (ax, aop_bit_not);
- gen_extend (ax, value->type);
- }
- /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
- /* Dereference the value on the top of the stack. */
- static void
- gen_deref (struct agent_expr *ax, struct axs_value *value)
- {
- /* The caller should check the type, because several operators use
- this, and we don't know what error message to generate. */
- if (!pointer_type (value->type))
- internal_error (__FILE__, __LINE__,
- _("gen_deref: expected a pointer"));
- /* We've got an rvalue now, which is a pointer. We want to yield an
- lvalue, whose address is exactly that pointer. So we don't
- actually emit any code; we just change the type from "Pointer to
- T" to "T", and mark the value as an lvalue in memory. Leave it
- to the consumer to actually dereference it. */
- value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
- if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
- error (_("Attempt to dereference a generic pointer."));
- value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
- ? axs_rvalue : axs_lvalue_memory);
- }
- /* Produce the address of the lvalue on the top of the stack. */
- static void
- gen_address_of (struct agent_expr *ax, struct axs_value *value)
- {
- /* Special case for taking the address of a function. The ANSI
- standard describes this as a special case, too, so this
- arrangement is not without motivation. */
- if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
- /* The value's already an rvalue on the stack, so we just need to
- change the type. */
- value->type = lookup_pointer_type (value->type);
- else
- switch (value->kind)
- {
- case axs_rvalue:
- error (_("Operand of `&' is an rvalue, which has no address."));
- case axs_lvalue_register:
- error (_("Operand of `&' is in a register, and has no address."));
- case axs_lvalue_memory:
- value->kind = axs_rvalue;
- value->type = lookup_pointer_type (value->type);
- break;
- }
- }
- /* Generate code to push the value of a bitfield of a structure whose
- address is on the top of the stack. START and END give the
- starting and one-past-ending *bit* numbers of the field within the
- structure. */
- static void
- gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
- struct axs_value *value, struct type *type,
- int start, int end)
- {
- /* Note that ops[i] fetches 8 << i bits. */
- static enum agent_op ops[]
- = {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
- static int num_ops = (sizeof (ops) / sizeof (ops[0]));
- /* We don't want to touch any byte that the bitfield doesn't
- actually occupy; we shouldn't make any accesses we're not
- explicitly permitted to. We rely here on the fact that the
- bytecode `ref' operators work on unaligned addresses.
- It takes some fancy footwork to get the stack to work the way
- we'd like. Say we're retrieving a bitfield that requires three
- fetches. Initially, the stack just contains the address:
- addr
- For the first fetch, we duplicate the address
- addr addr
- then add the byte offset, do the fetch, and shift and mask as
- needed, yielding a fragment of the value, properly aligned for
- the final bitwise or:
- addr frag1
- then we swap, and repeat the process:
- frag1 addr --- address on top
- frag1 addr addr --- duplicate it
- frag1 addr frag2 --- get second fragment
- frag1 frag2 addr --- swap again
- frag1 frag2 frag3 --- get third fragment
- Notice that, since the third fragment is the last one, we don't
- bother duplicating the address this time. Now we have all the
- fragments on the stack, and we can simply `or' them together,
- yielding the final value of the bitfield. */
- /* The first and one-after-last bits in the field, but rounded down
- and up to byte boundaries. */
- int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
- int bound_end = (((end + TARGET_CHAR_BIT - 1)
- / TARGET_CHAR_BIT)
- * TARGET_CHAR_BIT);
- /* current bit offset within the structure */
- int offset;
- /* The index in ops of the opcode we're considering. */
- int op;
- /* The number of fragments we generated in the process. Probably
- equal to the number of `one' bits in bytesize, but who cares? */
- int fragment_count;
- /* Dereference any typedefs. */
- type = check_typedef (type);
- /* Can we fetch the number of bits requested at all? */
- if ((end - start) > ((1 << num_ops) * 8))
- internal_error (__FILE__, __LINE__,
- _("gen_bitfield_ref: bitfield too wide"));
- /* Note that we know here that we only need to try each opcode once.
- That may not be true on machines with weird byte sizes. */
- offset = bound_start;
- fragment_count = 0;
- for (op = num_ops - 1; op >= 0; op--)
- {
- /* number of bits that ops[op] would fetch */
- int op_size = 8 << op;
- /* The stack at this point, from bottom to top, contains zero or
- more fragments, then the address. */
- /* Does this fetch fit within the bitfield? */
- if (offset + op_size <= bound_end)
- {
- /* Is this the last fragment? */
- int last_frag = (offset + op_size == bound_end);
- if (!last_frag)
- ax_simple (ax, aop_dup); /* keep a copy of the address */
- /* Add the offset. */
- gen_offset (ax, offset / TARGET_CHAR_BIT);
- if (ax->tracing)
- {
- /* Record the area of memory we're about to fetch. */
- ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
- }
- /* Perform the fetch. */
- ax_simple (ax, ops[op]);
- /* Shift the bits we have to their proper position.
- gen_left_shift will generate right shifts when the operand
- is negative.
- A big-endian field diagram to ponder:
- byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
- +------++------++------++------++------++------++------++------+
- xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
- ^ ^ ^ ^
- bit number 16 32 48 53
- These are bit numbers as supplied by GDB. Note that the
- bit numbers run from right to left once you've fetched the
- value!
- A little-endian field diagram to ponder:
- byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
- +------++------++------++------++------++------++------++------+
- xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
- ^ ^ ^ ^ ^
- bit number 48 32 16 4 0
- In both cases, the most significant end is on the left
- (i.e. normal numeric writing order), which means that you
- don't go crazy thinking about `left' and `right' shifts.
- We don't have to worry about masking yet:
- - If they contain garbage off the least significant end, then we
- must be looking at the low end of the field, and the right
- shift will wipe them out.
- - If they contain garbage off the most significant end, then we
- must be looking at the most significant end of the word, and
- the sign/zero extension will wipe them out.
- - If we're in the interior of the word, then there is no garbage
- on either end, because the ref operators zero-extend. */
- if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
- gen_left_shift (ax, end - (offset + op_size));
- else
- gen_left_shift (ax, offset - start);
- if (!last_frag)
- /* Bring the copy of the address up to the top. */
- ax_simple (ax, aop_swap);
- offset += op_size;
- fragment_count++;
- }
- }
- /* Generate enough bitwise `or' operations to combine all the
- fragments we left on the stack. */
- while (fragment_count-- > 1)
- ax_simple (ax, aop_bit_or);
- /* Sign- or zero-extend the value as appropriate. */
- ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
- /* This is *not* an lvalue. Ugh. */
- value->kind = axs_rvalue;
- value->type = type;
- }
- /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
- is an accumulated offset (in bytes), will be nonzero for objects
- embedded in other objects, like C++ base classes. Behavior should
- generally follow value_primitive_field. */
- static void
- gen_primitive_field (struct expression *exp,
- struct agent_expr *ax, struct axs_value *value,
- int offset, int fieldno, struct type *type)
- {
- /* Is this a bitfield? */
- if (TYPE_FIELD_PACKED (type, fieldno))
- gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno),
- (offset * TARGET_CHAR_BIT
- + TYPE_FIELD_BITPOS (type, fieldno)),
- (offset * TARGET_CHAR_BIT
- + TYPE_FIELD_BITPOS (type, fieldno)
- + TYPE_FIELD_BITSIZE (type, fieldno)));
- else
- {
- gen_offset (ax, offset
- + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
- value->kind = axs_lvalue_memory;
- value->type = TYPE_FIELD_TYPE (type, fieldno);
- }
- }
- /* Search for the given field in either the given type or one of its
- base classes. Return 1 if found, 0 if not. */
- static int
- gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax,
- struct axs_value *value,
- char *field, int offset, struct type *type)
- {
- int i, rslt;
- int nbases = TYPE_N_BASECLASSES (type);
- CHECK_TYPEDEF (type);
- for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
- {
- const char *this_name = TYPE_FIELD_NAME (type, i);
- if (this_name)
- {
- if (strcmp (field, this_name) == 0)
- {
- /* Note that bytecodes for the struct's base (aka
- "this") will have been generated already, which will
- be unnecessary but not harmful if the static field is
- being handled as a global. */
- if (field_is_static (&TYPE_FIELD (type, i)))
- {
- gen_static_field (exp->gdbarch, ax, value, type, i);
- if (value->optimized_out)
- error (_("static field `%s' has been "
- "optimized out, cannot use"),
- field);
- return 1;
- }
- gen_primitive_field (exp, ax, value, offset, i, type);
- return 1;
- }
- #if 0 /* is this right? */
- if (this_name[0] == '\0')
- internal_error (__FILE__, __LINE__,
- _("find_field: anonymous unions not supported"));
- #endif
- }
- }
- /* Now scan through base classes recursively. */
- for (i = 0; i < nbases; i++)
- {
- struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
- rslt = gen_struct_ref_recursive (exp, ax, value, field,
- offset + TYPE_BASECLASS_BITPOS (type, i)
- / TARGET_CHAR_BIT,
- basetype);
- if (rslt)
- return 1;
- }
- /* Not found anywhere, flag so caller can complain. */
- return 0;
- }
- /* Generate code to reference the member named FIELD of a structure or
- union. The top of the stack, as described by VALUE, should have
- type (pointer to a)* struct/union. OPERATOR_NAME is the name of
- the operator being compiled, and OPERAND_NAME is the kind of thing
- it operates on; we use them in error messages. */
- static void
- gen_struct_ref (struct expression *exp, struct agent_expr *ax,
- struct axs_value *value, char *field,
- char *operator_name, char *operand_name)
- {
- struct type *type;
- int found;
- /* Follow pointers until we reach a non-pointer. These aren't the C
- semantics, but they're what the normal GDB evaluator does, so we
- should at least be consistent. */
- while (pointer_type (value->type))
- {
- require_rvalue (ax, value);
- gen_deref (ax, value);
- }
- type = check_typedef (value->type);
- /* This must yield a structure or a union. */
- if (TYPE_CODE (type) != TYPE_CODE_STRUCT
- && TYPE_CODE (type) != TYPE_CODE_UNION)
- error (_("The left operand of `%s' is not a %s."),
- operator_name, operand_name);
- /* And it must be in memory; we don't deal with structure rvalues,
- or structures living in registers. */
- if (value->kind != axs_lvalue_memory)
- error (_("Structure does not live in memory."));
- /* Search through fields and base classes recursively. */
- found = gen_struct_ref_recursive (exp, ax, value, field, 0, type);
- if (!found)
- error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
- field, TYPE_TAG_NAME (type));
- }
- static int
- gen_namespace_elt (struct expression *exp,
- struct agent_expr *ax, struct axs_value *value,
- const struct type *curtype, char *name);
- static int
- gen_maybe_namespace_elt (struct expression *exp,
- struct agent_expr *ax, struct axs_value *value,
- const struct type *curtype, char *name);
- static void
- gen_static_field (struct gdbarch *gdbarch,
- struct agent_expr *ax, struct axs_value *value,
- struct type *type, int fieldno)
- {
- if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
- {
- ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
- value->kind = axs_lvalue_memory;
- value->type = TYPE_FIELD_TYPE (type, fieldno);
- value->optimized_out = 0;
- }
- else
- {
- const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
- struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
- if (sym)
- {
- gen_var_ref (gdbarch, ax, value, sym);
- /* Don't error if the value was optimized out, we may be
- scanning all static fields and just want to pass over this
- and continue with the rest. */
- }
- else
- {
- /* Silently assume this was optimized out; class printing
- will let the user know why the data is missing. */
- value->optimized_out = 1;
- }
- }
- }
- static int
- gen_struct_elt_for_reference (struct expression *exp,
- struct agent_expr *ax, struct axs_value *value,
- struct type *type, char *fieldname)
- {
- struct type *t = type;
- int i;
- if (TYPE_CODE (t) != TYPE_CODE_STRUCT
- && TYPE_CODE (t) != TYPE_CODE_UNION)
- internal_error (__FILE__, __LINE__,
- _("non-aggregate type to gen_struct_elt_for_reference"));
- for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
- {
- const char *t_field_name = TYPE_FIELD_NAME (t, i);
- if (t_field_name && strcmp (t_field_name, fieldname) == 0)
- {
- if (field_is_static (&TYPE_FIELD (t, i)))
- {
- gen_static_field (exp->gdbarch, ax, value, t, i);
- if (value->optimized_out)
- error (_("static field `%s' has been "
- "optimized out, cannot use"),
- fieldname);
- return 1;
- }
- if (TYPE_FIELD_PACKED (t, i))
- error (_("pointers to bitfield members not allowed"));
- /* FIXME we need a way to do "want_address" equivalent */
- error (_("Cannot reference non-static field \"%s\""), fieldname);
- }
- }
- /* FIXME add other scoped-reference cases here */
- /* Do a last-ditch lookup. */
- return gen_maybe_namespace_elt (exp, ax, value, type, fieldname);
- }
- /* C++: Return the member NAME of the namespace given by the type
- CURTYPE. */
- static int
- gen_namespace_elt (struct expression *exp,
- struct agent_expr *ax, struct axs_value *value,
- const struct type *curtype, char *name)
- {
- int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name);
- if (!found)
- error (_("No symbol \"%s\" in namespace \"%s\"."),
- name, TYPE_TAG_NAME (curtype));
- return found;
- }
- /* A helper function used by value_namespace_elt and
- value_struct_elt_for_reference. It looks up NAME inside the
- context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
- is a class and NAME refers to a type in CURTYPE itself (as opposed
- to, say, some base class of CURTYPE). */
- static int
- gen_maybe_namespace_elt (struct expression *exp,
- struct agent_expr *ax, struct axs_value *value,
- const struct type *curtype, char *name)
- {
- const char *namespace_name = TYPE_TAG_NAME (curtype);
- struct symbol *sym;
- sym = cp_lookup_symbol_namespace (namespace_name, name,
- block_for_pc (ax->scope),
- VAR_DOMAIN);
- if (sym == NULL)
- return 0;
- gen_var_ref (exp->gdbarch, ax, value, sym);
- if (value->optimized_out)
- error (_("`%s' has been optimized out, cannot use"),
- SYMBOL_PRINT_NAME (sym));
- return 1;
- }
- static int
- gen_aggregate_elt_ref (struct expression *exp,
- struct agent_expr *ax, struct axs_value *value,
- struct type *type, char *field,
- char *operator_name, char *operand_name)
- {
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- return gen_struct_elt_for_reference (exp, ax, value, type, field);
- break;
- case TYPE_CODE_NAMESPACE:
- return gen_namespace_elt (exp, ax, value, type, field);
- break;
- default:
- internal_error (__FILE__, __LINE__,
- _("non-aggregate type in gen_aggregate_elt_ref"));
- }
- return 0;
- }
- /* Generate code for GDB's magical `repeat' operator.
- LVALUE @ INT creates an array INT elements long, and whose elements
- have the same type as LVALUE, located in memory so that LVALUE is
- its first element. For example, argv[0]@argc gives you the array
- of command-line arguments.
- Unfortunately, because we have to know the types before we actually
- have a value for the expression, we can't implement this perfectly
- without changing the type system, having values that occupy two
- stack slots, doing weird things with sizeof, etc. So we require
- the right operand to be a constant expression. */
- static void
- gen_repeat (struct expression *exp, union exp_element **pc,
- struct agent_expr *ax, struct axs_value *value)
- {
- struct axs_value value1;
- /* We don't want to turn this into an rvalue, so no conversions
- here. */
- gen_expr (exp, pc, ax, &value1);
- if (value1.kind != axs_lvalue_memory)
- error (_("Left operand of `@' must be an object in memory."));
- /* Evaluate the length; it had better be a constant. */
- {
- struct value *v = const_expr (pc);
- int length;
- if (!v)
- error (_("Right operand of `@' must be a "
- "constant, in agent expressions."));
- if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
- error (_("Right operand of `@' must be an integer."));
- length = value_as_long (v);
- if (length <= 0)
- error (_("Right operand of `@' must be positive."));
- /* The top of the stack is already the address of the object, so
- all we need to do is frob the type of the lvalue. */
- {
- /* FIXME-type-allocation: need a way to free this type when we are
- done with it. */
- struct type *array
- = lookup_array_range_type (value1.type, 0, length - 1);
- value->kind = axs_lvalue_memory;
- value->type = array;
- }
- }
- }
- /* Emit code for the `sizeof' operator.
- *PC should point at the start of the operand expression; we advance it
- to the first instruction after the operand. */
- static void
- gen_sizeof (struct expression *exp, union exp_element **pc,
- struct agent_expr *ax, struct axs_value *value,
- struct type *size_type)
- {
- /* We don't care about the value of the operand expression; we only
- care about its type. However, in the current arrangement, the
- only way to find an expression's type is to generate code for it.
- So we generate code for the operand, and then throw it away,
- replacing it with code that simply pushes its size. */
- int start = ax->len;
- gen_expr (exp, pc, ax, value);
- /* Throw away the code we just generated. */
- ax->len = start;
- ax_const_l (ax, TYPE_LENGTH (value->type));
- value->kind = axs_rvalue;
- value->type = size_type;
- }
- /* Generating bytecode from GDB expressions: general recursive thingy */
- /* XXX: i18n */
- /* A gen_expr function written by a Gen-X'er guy.
- Append code for the subexpression of EXPR starting at *POS_P to AX. */
- void
- gen_expr (struct expression *exp, union exp_element **pc,
- struct agent_expr *ax, struct axs_value *value)
- {
- /* Used to hold the descriptions of operand expressions. */
- struct axs_value value1, value2, value3;
- enum exp_opcode op = (*pc)[0].opcode, op2;
- int if1, go1, if2, go2, end;
- struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
- /* If we're looking at a constant expression, just push its value. */
- {
- struct value *v = maybe_const_expr (pc);
- if (v)
- {
- ax_const_l (ax, value_as_long (v));
- value->kind = axs_rvalue;
- value->type = check_typedef (value_type (v));
- return;
- }
- }
- /* Otherwise, go ahead and generate code for it. */
- switch (op)
- {
- /* Binary arithmetic operators. */
- case BINOP_ADD:
- case BINOP_SUB:
- case BINOP_MUL:
- case BINOP_DIV:
- case BINOP_REM:
- case BINOP_LSH:
- case BINOP_RSH:
- case BINOP_SUBSCRIPT:
- case BINOP_BITWISE_AND:
- case BINOP_BITWISE_IOR:
- case BINOP_BITWISE_XOR:
- case BINOP_EQUAL:
- case BINOP_NOTEQUAL:
- case BINOP_LESS:
- case BINOP_GTR:
- case BINOP_LEQ:
- case BINOP_GEQ:
- (*pc)++;
- gen_expr (exp, pc, ax, &value1);
- gen_usual_unary (exp, ax, &value1);
- gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
- break;
- case BINOP_LOGICAL_AND:
- (*pc)++;
- /* Generate the obvious sequence of tests and jumps. */
- gen_expr (exp, pc, ax, &value1);
- gen_usual_unary (exp, ax, &value1);
- if1 = ax_goto (ax, aop_if_goto);
- go1 = ax_goto (ax, aop_goto);
- ax_label (ax, if1, ax->len);
- gen_expr (exp, pc, ax, &value2);
- gen_usual_unary (exp, ax, &value2);
- if2 = ax_goto (ax, aop_if_goto);
- go2 = ax_goto (ax, aop_goto);
- ax_label (ax, if2, ax->len);
- ax_const_l (ax, 1);
- end = ax_goto (ax, aop_goto);
- ax_label (ax, go1, ax->len);
- ax_label (ax, go2, ax->len);
- ax_const_l (ax, 0);
- ax_label (ax, end, ax->len);
- value->kind = axs_rvalue;
- value->type = int_type;
- break;
- case BINOP_LOGICAL_OR:
- (*pc)++;
- /* Generate the obvious sequence of tests and jumps. */
- gen_expr (exp, pc, ax, &value1);
- gen_usual_unary (exp, ax, &value1);
- if1 = ax_goto (ax, aop_if_goto);
- gen_expr (exp, pc, ax, &value2);
- gen_usual_unary (exp, ax, &value2);
- if2 = ax_goto (ax, aop_if_goto);
- ax_const_l (ax, 0);
- end = ax_goto (ax, aop_goto);
- ax_label (ax, if1, ax->len);
- ax_label (ax, if2, ax->len);
- ax_const_l (ax, 1);
- ax_label (ax, end, ax->len);
- value->kind = axs_rvalue;
- value->type = int_type;
- break;
- case TERNOP_COND:
- (*pc)++;
- gen_expr (exp, pc, ax, &value1);
- gen_usual_unary (exp, ax, &value1);
- /* For (A ? B : C), it's easiest to generate subexpression
- bytecodes in order, but if_goto jumps on true, so we invert
- the sense of A. Then we can do B by dropping through, and
- jump to do C. */
- gen_logical_not (ax, &value1, int_type);
- if1 = ax_goto (ax, aop_if_goto);
- gen_expr (exp, pc, ax, &value2);
- gen_usual_unary (exp, ax, &value2);
- end = ax_goto (ax, aop_goto);
- ax_label (ax, if1, ax->len);
- gen_expr (exp, pc, ax, &value3);
- gen_usual_unary (exp, ax, &value3);
- ax_label (ax, end, ax->len);
- /* This is arbitary - what if B and C are incompatible types? */
- value->type = value2.type;
- value->kind = value2.kind;
- break;
- case BINOP_ASSIGN:
- (*pc)++;
- if ((*pc)[0].opcode == OP_INTERNALVAR)
- {
- char *name = internalvar_name ((*pc)[1].internalvar);
- struct trace_state_variable *tsv;
- (*pc) += 3;
- gen_expr (exp, pc, ax, value);
- tsv = find_trace_state_variable (name);
- if (tsv)
- {
- ax_tsv (ax, aop_setv, tsv->number);
- if (ax->tracing)
- ax_tsv (ax, aop_tracev, tsv->number);
- }
- else
- error (_("$%s is not a trace state variable, "
- "may not assign to it"), name);
- }
- else
- error (_("May only assign to trace state variables"));
- break;
- case BINOP_ASSIGN_MODIFY:
- (*pc)++;
- op2 = (*pc)[0].opcode;
- (*pc)++;
- (*pc)++;
- if ((*pc)[0].opcode == OP_INTERNALVAR)
- {
- char *name = internalvar_name ((*pc)[1].internalvar);
- struct trace_state_variable *tsv;
- (*pc) += 3;
- tsv = find_trace_state_variable (name);
- if (tsv)
- {
- /* The tsv will be the left half of the binary operation. */
- ax_tsv (ax, aop_getv, tsv->number);
- if (ax->tracing)
- ax_tsv (ax, aop_tracev, tsv->number);
- /* Trace state variables are always 64-bit integers. */
- value1.kind = axs_rvalue;
- value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
- /* Now do right half of expression. */
- gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
- /* We have a result of the binary op, set the tsv. */
- ax_tsv (ax, aop_setv, tsv->number);
- if (ax->tracing)
- ax_tsv (ax, aop_tracev, tsv->number);
- }
- else
- error (_("$%s is not a trace state variable, "
- "may not assign to it"), name);
- }
- else
- error (_("May only assign to trace state variables"));
- break;
- /* Note that we need to be a little subtle about generating code
- for comma. In C, we can do some optimizations here because
- we know the left operand is only being evaluated for effect.
- However, if the tracing kludge is in effect, then we always
- need to evaluate the left hand side fully, so that all the
- variables it mentions get traced. */
- case BINOP_COMMA:
- (*pc)++;
- gen_expr (exp, pc, ax, &value1);
- /* Don't just dispose of the left operand. We might be tracing,
- in which case we want to emit code to trace it if it's an
- lvalue. */
- gen_traced_pop (exp->gdbarch, ax, &value1);
- gen_expr (exp, pc, ax, value);
- /* It's the consumer's responsibility to trace the right operand. */
- break;
- case OP_LONG: /* some integer constant */
- {
- struct type *type = (*pc)[1].type;
- LONGEST k = (*pc)[2].longconst;
- (*pc) += 4;
- gen_int_literal (ax, value, k, type);
- }
- break;
- case OP_VAR_VALUE:
- gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
- if (value->optimized_out)
- error (_("`%s' has been optimized out, cannot use"),
- SYMBOL_PRINT_NAME ((*pc)[2].symbol));
- (*pc) += 4;
- break;
- case OP_REGISTER:
- {
- const char *name = &(*pc)[2].string;
- int reg;
- (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
- reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
- if (reg == -1)
- internal_error (__FILE__, __LINE__,
- _("Register $%s not available"), name);
- /* No support for tracing user registers yet. */
- if (reg >= gdbarch_num_regs (exp->gdbarch)
- + gdbarch_num_pseudo_regs (exp->gdbarch))
- error (_("'%s' is a user-register; "
- "GDB cannot yet trace user-register contents."),
- name);
- value->kind = axs_lvalue_register;
- value->u.reg = reg;
- value->type = register_type (exp->gdbarch, reg);
- }
- break;
- case OP_INTERNALVAR:
- {
- struct internalvar *var = (*pc)[1].internalvar;
- const char *name = internalvar_name (var);
- struct trace_state_variable *tsv;
- (*pc) += 3;
- tsv = find_trace_state_variable (name);
- if (tsv)
- {
- ax_tsv (ax, aop_getv, tsv->number);
- if (ax->tracing)
- ax_tsv (ax, aop_tracev, tsv->number);
- /* Trace state variables are always 64-bit integers. */
- value->kind = axs_rvalue;
- value->type = builtin_type (exp->gdbarch)->builtin_long_long;
- }
- else if (! compile_internalvar_to_ax (var, ax, value))
- error (_("$%s is not a trace state variable; GDB agent "
- "expressions cannot use convenience variables."), name);
- }
- break;
- /* Weirdo operator: see comments for gen_repeat for details. */
- case BINOP_REPEAT:
- /* Note that gen_repeat handles its own argument evaluation. */
- (*pc)++;
- gen_repeat (exp, pc, ax, value);
- break;
- case UNOP_CAST:
- {
- struct type *type = (*pc)[1].type;
- (*pc) += 3;
- gen_expr (exp, pc, ax, value);
- gen_cast (ax, value, type);
- }
- break;
- case UNOP_CAST_TYPE:
- {
- int offset;
- struct value *val;
- struct type *type;
- ++*pc;
- offset = *pc - exp->elts;
- val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
- type = value_type (val);
- *pc = &exp->elts[offset];
- gen_expr (exp, pc, ax, value);
- gen_cast (ax, value, type);
- }
- break;
- case UNOP_MEMVAL:
- {
- struct type *type = check_typedef ((*pc)[1].type);
- (*pc) += 3;
- gen_expr (exp, pc, ax, value);
- /* If we have an axs_rvalue or an axs_lvalue_memory, then we
- already have the right value on the stack. For
- axs_lvalue_register, we must convert. */
- if (value->kind == axs_lvalue_register)
- require_rvalue (ax, value);
- value->type = type;
- value->kind = axs_lvalue_memory;
- }
- break;
- case UNOP_MEMVAL_TYPE:
- {
- int offset;
- struct value *val;
- struct type *type;
- ++*pc;
- offset = *pc - exp->elts;
- val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
- type = value_type (val);
- *pc = &exp->elts[offset];
- gen_expr (exp, pc, ax, value);
- /* If we have an axs_rvalue or an axs_lvalue_memory, then we
- already have the right value on the stack. For
- axs_lvalue_register, we must convert. */
- if (value->kind == axs_lvalue_register)
- require_rvalue (ax, value);
- value->type = type;
- value->kind = axs_lvalue_memory;
- }
- break;
- case UNOP_PLUS:
- (*pc)++;
- /* + FOO is equivalent to 0 + FOO, which can be optimized. */
- gen_expr (exp, pc, ax, value);
- gen_usual_unary (exp, ax, value);
- break;
- case UNOP_NEG:
- (*pc)++;
- /* -FOO is equivalent to 0 - FOO. */
- gen_int_literal (ax, &value1, 0,
- builtin_type (exp->gdbarch)->builtin_int);
- gen_usual_unary (exp, ax, &value1); /* shouldn't do much */
- gen_expr (exp, pc, ax, &value2);
- gen_usual_unary (exp, ax, &value2);
- gen_usual_arithmetic (exp, ax, &value1, &value2);
- gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
- break;
- case UNOP_LOGICAL_NOT:
- (*pc)++;
- gen_expr (exp, pc, ax, value);
- gen_usual_unary (exp, ax, value);
- gen_logical_not (ax, value, int_type);
- break;
- case UNOP_COMPLEMENT:
- (*pc)++;
- gen_expr (exp, pc, ax, value);
- gen_usual_unary (exp, ax, value);
- gen_integral_promotions (exp, ax, value);
- gen_complement (ax, value);
- break;
- case UNOP_IND:
- (*pc)++;
- gen_expr (exp, pc, ax, value);
- gen_usual_unary (exp, ax, value);
- if (!pointer_type (value->type))
- error (_("Argument of unary `*' is not a pointer."));
- gen_deref (ax, value);
- break;
- case UNOP_ADDR:
- (*pc)++;
- gen_expr (exp, pc, ax, value);
- gen_address_of (ax, value);
- break;
- case UNOP_SIZEOF:
- (*pc)++;
- /* Notice that gen_sizeof handles its own operand, unlike most
- of the other unary operator functions. This is because we
- have to throw away the code we generate. */
- gen_sizeof (exp, pc, ax, value,
- builtin_type (exp->gdbarch)->builtin_int);
- break;
- case STRUCTOP_STRUCT:
- case STRUCTOP_PTR:
- {
- int length = (*pc)[1].longconst;
- char *name = &(*pc)[2].string;
- (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
- gen_expr (exp, pc, ax, value);
- if (op == STRUCTOP_STRUCT)
- gen_struct_ref (exp, ax, value, name, ".", "structure or union");
- else if (op == STRUCTOP_PTR)
- gen_struct_ref (exp, ax, value, name, "->",
- "pointer to a structure or union");
- else
- /* If this `if' chain doesn't handle it, then the case list
- shouldn't mention it, and we shouldn't be here. */
- internal_error (__FILE__, __LINE__,
- _("gen_expr: unhandled struct case"));
- }
- break;
- case OP_THIS:
- {
- struct symbol *sym, *func;
- const struct block *b;
- const struct language_defn *lang;
- b = block_for_pc (ax->scope);
- func = block_linkage_function (b);
- lang = language_def (SYMBOL_LANGUAGE (func));
- sym = lookup_language_this (lang, b);
- if (!sym)
- error (_("no `%s' found"), lang->la_name_of_this);
- gen_var_ref (exp->gdbarch, ax, value, sym);
- if (value->optimized_out)
- error (_("`%s' has been optimized out, cannot use"),
- SYMBOL_PRINT_NAME (sym));
- (*pc) += 2;
- }
- break;
- case OP_SCOPE:
- {
- struct type *type = (*pc)[1].type;
- int length = longest_to_int ((*pc)[2].longconst);
- char *name = &(*pc)[3].string;
- int found;
- found = gen_aggregate_elt_ref (exp, ax, value, type, name,
- "?", "??");
- if (!found)
- error (_("There is no field named %s"), name);
- (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
- }
- break;
- case OP_TYPE:
- case OP_TYPEOF:
- case OP_DECLTYPE:
- error (_("Attempt to use a type name as an expression."));
- default:
- error (_("Unsupported operator %s (%d) in expression."),
- op_name (exp, op), op);
- }
- }
- /* This handles the middle-to-right-side of code generation for binary
- expressions, which is shared between regular binary operations and
- assign-modify (+= and friends) expressions. */
- static void
- gen_expr_binop_rest (struct expression *exp,
- enum exp_opcode op, union exp_element **pc,
- struct agent_expr *ax, struct axs_value *value,
- struct axs_value *value1, struct axs_value *value2)
- {
- struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
- gen_expr (exp, pc, ax, value2);
- gen_usual_unary (exp, ax, value2);
- gen_usual_arithmetic (exp, ax, value1, value2);
- switch (op)
- {
- case BINOP_ADD:
- if (TYPE_CODE (value1->type) == TYPE_CODE_INT
- && pointer_type (value2->type))
- {
- /* Swap the values and proceed normally. */
- ax_simple (ax, aop_swap);
- gen_ptradd (ax, value, value2, value1);
- }
- else if (pointer_type (value1->type)
- && TYPE_CODE (value2->type) == TYPE_CODE_INT)
- gen_ptradd (ax, value, value1, value2);
- else
- gen_binop (ax, value, value1, value2,
- aop_add, aop_add, 1, "addition");
- break;
- case BINOP_SUB:
- if (pointer_type (value1->type)
- && TYPE_CODE (value2->type) == TYPE_CODE_INT)
- gen_ptrsub (ax,value, value1, value2);
- else if (pointer_type (value1->type)
- && pointer_type (value2->type))
- /* FIXME --- result type should be ptrdiff_t */
- gen_ptrdiff (ax, value, value1, value2,
- builtin_type (exp->gdbarch)->builtin_long);
- else
- gen_binop (ax, value, value1, value2,
- aop_sub, aop_sub, 1, "subtraction");
- break;
- case BINOP_MUL:
- gen_binop (ax, value, value1, value2,
- aop_mul, aop_mul, 1, "multiplication");
- break;
- case BINOP_DIV:
- gen_binop (ax, value, value1, value2,
- aop_div_signed, aop_div_unsigned, 1, "division");
- break;
- case BINOP_REM:
- gen_binop (ax, value, value1, value2,
- aop_rem_signed, aop_rem_unsigned, 1, "remainder");
- break;
- case BINOP_LSH:
- gen_binop (ax, value, value1, value2,
- aop_lsh, aop_lsh, 1, "left shift");
- break;
- case BINOP_RSH:
- gen_binop (ax, value, value1, value2,
- aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
- break;
- case BINOP_SUBSCRIPT:
- {
- struct type *type;
- if (binop_types_user_defined_p (op, value1->type, value2->type))
- {
- error (_("cannot subscript requested type: "
- "cannot call user defined functions"));
- }
- else
- {
- /* If the user attempts to subscript something that is not
- an array or pointer type (like a plain int variable for
- example), then report this as an error. */
- type = check_typedef (value1->type);
- if (TYPE_CODE (type) != TYPE_CODE_ARRAY
- && TYPE_CODE (type) != TYPE_CODE_PTR)
- {
- if (TYPE_NAME (type))
- error (_("cannot subscript something of type `%s'"),
- TYPE_NAME (type));
- else
- error (_("cannot subscript requested type"));
- }
- }
- if (!is_integral_type (value2->type))
- error (_("Argument to arithmetic operation "
- "not a number or boolean."));
- gen_ptradd (ax, value, value1, value2);
- gen_deref (ax, value);
- break;
- }
- case BINOP_BITWISE_AND:
- gen_binop (ax, value, value1, value2,
- aop_bit_and, aop_bit_and, 0, "bitwise and");
- break;
- case BINOP_BITWISE_IOR:
- gen_binop (ax, value, value1, value2,
- aop_bit_or, aop_bit_or, 0, "bitwise or");
- break;
- case BINOP_BITWISE_XOR:
- gen_binop (ax, value, value1, value2,
- aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
- break;
- case BINOP_EQUAL:
- gen_equal (ax, value, value1, value2, int_type);
- break;
- case BINOP_NOTEQUAL:
- gen_equal (ax, value, value1, value2, int_type);
- gen_logical_not (ax, value, int_type);
- break;
- case BINOP_LESS:
- gen_less (ax, value, value1, value2, int_type);
- break;
- case BINOP_GTR:
- ax_simple (ax, aop_swap);
- gen_less (ax, value, value1, value2, int_type);
- break;
- case BINOP_LEQ:
- ax_simple (ax, aop_swap);
- gen_less (ax, value, value1, value2, int_type);
- gen_logical_not (ax, value, int_type);
- break;
- case BINOP_GEQ:
- gen_less (ax, value, value1, value2, int_type);
- gen_logical_not (ax, value, int_type);
- break;
- default:
- /* We should only list operators in the outer case statement
- that we actually handle in the inner case statement. */
- internal_error (__FILE__, __LINE__,
- _("gen_expr: op case sets don't match"));
- }
- }
- /* Given a single variable and a scope, generate bytecodes to trace
- its value. This is for use in situations where we have only a
- variable's name, and no parsed expression; for instance, when the
- name comes from a list of local variables of a function. */
- struct agent_expr *
- gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
- struct symbol *var, int trace_string)
- {
- struct cleanup *old_chain = 0;
- struct agent_expr *ax = new_agent_expr (gdbarch, scope);
- struct axs_value value;
- old_chain = make_cleanup_free_agent_expr (ax);
- ax->tracing = 1;
- ax->trace_string = trace_string;
- gen_var_ref (gdbarch, ax, &value, var);
- /* If there is no actual variable to trace, flag it by returning
- an empty agent expression. */
- if (value.optimized_out)
- {
- do_cleanups (old_chain);
- return NULL;
- }
- /* Make sure we record the final object, and get rid of it. */
- gen_traced_pop (gdbarch, ax, &value);
- /* Oh, and terminate. */
- ax_simple (ax, aop_end);
- /* We have successfully built the agent expr, so cancel the cleanup
- request. If we add more cleanups that we always want done, this
- will have to get more complicated. */
- discard_cleanups (old_chain);
- return ax;
- }
- /* Generating bytecode from GDB expressions: driver */
- /* Given a GDB expression EXPR, return bytecode to trace its value.
- The result will use the `trace' and `trace_quick' bytecodes to
- record the value of all memory touched by the expression. The
- caller can then use the ax_reqs function to discover which
- registers it relies upon. */
- struct agent_expr *
- gen_trace_for_expr (CORE_ADDR scope, struct expression *expr,
- int trace_string)
- {
- struct cleanup *old_chain = 0;
- struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
- union exp_element *pc;
- struct axs_value value;
- old_chain = make_cleanup_free_agent_expr (ax);
- pc = expr->elts;
- ax->tracing = 1;
- ax->trace_string = trace_string;
- value.optimized_out = 0;
- gen_expr (expr, &pc, ax, &value);
- /* Make sure we record the final object, and get rid of it. */
- gen_traced_pop (expr->gdbarch, ax, &value);
- /* Oh, and terminate. */
- ax_simple (ax, aop_end);
- /* We have successfully built the agent expr, so cancel the cleanup
- request. If we add more cleanups that we always want done, this
- will have to get more complicated. */
- discard_cleanups (old_chain);
- return ax;
- }
- /* Given a GDB expression EXPR, return a bytecode sequence that will
- evaluate and return a result. The bytecodes will do a direct
- evaluation, using the current data on the target, rather than
- recording blocks of memory and registers for later use, as
- gen_trace_for_expr does. The generated bytecode sequence leaves
- the result of expression evaluation on the top of the stack. */
- struct agent_expr *
- gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
- {
- struct cleanup *old_chain = 0;
- struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
- union exp_element *pc;
- struct axs_value value;
- old_chain = make_cleanup_free_agent_expr (ax);
- pc = expr->elts;
- ax->tracing = 0;
- value.optimized_out = 0;
- gen_expr (expr, &pc, ax, &value);
- require_rvalue (ax, &value);
- /* Oh, and terminate. */
- ax_simple (ax, aop_end);
- /* We have successfully built the agent expr, so cancel the cleanup
- request. If we add more cleanups that we always want done, this
- will have to get more complicated. */
- discard_cleanups (old_chain);
- return ax;
- }
- struct agent_expr *
- gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch,
- int trace_string)
- {
- struct cleanup *old_chain = 0;
- struct agent_expr *ax = new_agent_expr (gdbarch, scope);
- struct axs_value value;
- old_chain = make_cleanup_free_agent_expr (ax);
- ax->tracing = 1;
- ax->trace_string = trace_string;
- gdbarch_gen_return_address (gdbarch, ax, &value, scope);
- /* Make sure we record the final object, and get rid of it. */
- gen_traced_pop (gdbarch, ax, &value);
- /* Oh, and terminate. */
- ax_simple (ax, aop_end);
- /* We have successfully built the agent expr, so cancel the cleanup
- request. If we add more cleanups that we always want done, this
- will have to get more complicated. */
- discard_cleanups (old_chain);
- return ax;
- }
- /* Given a collection of printf-style arguments, generate code to
- evaluate the arguments and pass everything to a special
- bytecode. */
- struct agent_expr *
- gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch,
- CORE_ADDR function, LONGEST channel,
- const char *format, int fmtlen,
- struct format_piece *frags,
- int nargs, struct expression **exprs)
- {
- struct cleanup *old_chain = 0;
- struct agent_expr *ax = new_agent_expr (gdbarch, scope);
- union exp_element *pc;
- struct axs_value value;
- int tem;
- old_chain = make_cleanup_free_agent_expr (ax);
- /* We're computing values, not doing side effects. */
- ax->tracing = 0;
- /* Evaluate and push the args on the stack in reverse order,
- for simplicity of collecting them on the target side. */
- for (tem = nargs - 1; tem >= 0; --tem)
- {
- pc = exprs[tem]->elts;
- value.optimized_out = 0;
- gen_expr (exprs[tem], &pc, ax, &value);
- require_rvalue (ax, &value);
- }
- /* Push function and channel. */
- ax_const_l (ax, channel);
- ax_const_l (ax, function);
- /* Issue the printf bytecode proper. */
- ax_simple (ax, aop_printf);
- ax_simple (ax, nargs);
- ax_string (ax, format, fmtlen);
- /* And terminate. */
- ax_simple (ax, aop_end);
- /* We have successfully built the agent expr, so cancel the cleanup
- request. If we add more cleanups that we always want done, this
- will have to get more complicated. */
- discard_cleanups (old_chain);
- return ax;
- }
- static void
- agent_eval_command_one (const char *exp, int eval, CORE_ADDR pc)
- {
- struct cleanup *old_chain = 0;
- struct expression *expr;
- struct agent_expr *agent;
- const char *arg;
- int trace_string = 0;
- if (!eval)
- {
- if (*exp == '/')
- exp = decode_agent_options (exp, &trace_string);
- }
- arg = exp;
- if (!eval && strcmp (arg, "$_ret") == 0)
- {
- agent = gen_trace_for_return_address (pc, get_current_arch (),
- trace_string);
- old_chain = make_cleanup_free_agent_expr (agent);
- }
- else
- {
- expr = parse_exp_1 (&arg, pc, block_for_pc (pc), 0);
- old_chain = make_cleanup (free_current_contents, &expr);
- if (eval)
- {
- gdb_assert (trace_string == 0);
- agent = gen_eval_for_expr (pc, expr);
- }
- else
- agent = gen_trace_for_expr (pc, expr, trace_string);
- make_cleanup_free_agent_expr (agent);
- }
- ax_reqs (agent);
- ax_print (gdb_stdout, agent);
- /* It would be nice to call ax_reqs here to gather some general info
- about the expression, and then print out the result. */
- do_cleanups (old_chain);
- dont_repeat ();
- }
- static void
- agent_command_1 (char *exp, int eval)
- {
- /* We don't deal with overlay debugging at the moment. We need to
- think more carefully about this. If you copy this code into
- another command, change the error message; the user shouldn't
- have to know anything about agent expressions. */
- if (overlay_debugging)
- error (_("GDB can't do agent expression translation with overlays."));
- if (exp == 0)
- error_no_arg (_("expression to translate"));
- if (check_for_argument (&exp, "-at", sizeof ("-at") - 1))
- {
- struct linespec_result canonical;
- int ix;
- struct linespec_sals *iter;
- struct cleanup *old_chain;
- exp = skip_spaces (exp);
- init_linespec_result (&canonical);
- decode_line_full (&exp, DECODE_LINE_FUNFIRSTLINE,
- (struct symtab *) NULL, 0, &canonical,
- NULL, NULL);
- old_chain = make_cleanup_destroy_linespec_result (&canonical);
- exp = skip_spaces (exp);
- if (exp[0] == ',')
- {
- exp++;
- exp = skip_spaces (exp);
- }
- for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
- {
- int i;
- for (i = 0; i < iter->sals.nelts; i++)
- agent_eval_command_one (exp, eval, iter->sals.sals[i].pc);
- }
- do_cleanups (old_chain);
- }
- else
- agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ()));
- dont_repeat ();
- }
- static void
- agent_command (char *exp, int from_tty)
- {
- agent_command_1 (exp, 0);
- }
- /* Parse the given expression, compile it into an agent expression
- that does direct evaluation, and display the resulting
- expression. */
- static void
- agent_eval_command (char *exp, int from_tty)
- {
- agent_command_1 (exp, 1);
- }
- /* Parse the given expression, compile it into an agent expression
- that does a printf, and display the resulting expression. */
- static void
- maint_agent_printf_command (char *exp, int from_tty)
- {
- struct cleanup *old_chain = 0;
- struct expression *expr;
- struct expression *argvec[100];
- struct agent_expr *agent;
- struct frame_info *fi = get_current_frame (); /* need current scope */
- const char *cmdrest;
- const char *format_start, *format_end;
- struct format_piece *fpieces;
- int nargs;
- /* We don't deal with overlay debugging at the moment. We need to
- think more carefully about this. If you copy this code into
- another command, change the error message; the user shouldn't
- have to know anything about agent expressions. */
- if (overlay_debugging)
- error (_("GDB can't do agent expression translation with overlays."));
- if (exp == 0)
- error_no_arg (_("expression to translate"));
- cmdrest = exp;
- cmdrest = skip_spaces_const (cmdrest);
- if (*cmdrest++ != '"')
- error (_("Must start with a format string."));
- format_start = cmdrest;
- fpieces = parse_format_string (&cmdrest);
- old_chain = make_cleanup (free_format_pieces_cleanup, &fpieces);
- format_end = cmdrest;
- if (*cmdrest++ != '"')
- error (_("Bad format string, non-terminated '\"'."));
- cmdrest = skip_spaces_const (cmdrest);
- if (*cmdrest != ',' && *cmdrest != 0)
- error (_("Invalid argument syntax"));
- if (*cmdrest == ',')
- cmdrest++;
- cmdrest = skip_spaces_const (cmdrest);
- nargs = 0;
- while (*cmdrest != '\0')
- {
- const char *cmd1;
- cmd1 = cmdrest;
- expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1);
- argvec[nargs] = expr;
- ++nargs;
- cmdrest = cmd1;
- if (*cmdrest == ',')
- ++cmdrest;
- /* else complain? */
- }
- agent = gen_printf (get_frame_pc (fi), get_current_arch (), 0, 0,
- format_start, format_end - format_start,
- fpieces, nargs, argvec);
- make_cleanup_free_agent_expr (agent);
- ax_reqs (agent);
- ax_print (gdb_stdout, agent);
- /* It would be nice to call ax_reqs here to gather some general info
- about the expression, and then print out the result. */
- do_cleanups (old_chain);
- dont_repeat ();
- }
- /* Initialization code. */
- void _initialize_ax_gdb (void);
- void
- _initialize_ax_gdb (void)
- {
- add_cmd ("agent", class_maintenance, agent_command,
- _("\
- Translate an expression into remote agent bytecode for tracing.\n\
- Usage: maint agent [-at location,] EXPRESSION\n\
- If -at is given, generate remote agent bytecode for this location.\n\
- If not, generate remote agent bytecode for current frame pc address."),
- &maintenancelist);
- add_cmd ("agent-eval", class_maintenance, agent_eval_command,
- _("\
- Translate an expression into remote agent bytecode for evaluation.\n\
- Usage: maint agent-eval [-at location,] EXPRESSION\n\
- If -at is given, generate remote agent bytecode for this location.\n\
- If not, generate remote agent bytecode for current frame pc address."),
- &maintenancelist);
- add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command,
- _("Translate an expression into remote "
- "agent bytecode for evaluation and display the bytecodes."),
- &maintenancelist);
- }