runtime/linux/task_finder.c - systemtap

Global variables defined

Data types defined

Functions defined

Macros defined

Source code

#ifndef TASK_FINDER_C
#define TASK_FINDER_C

/*
* Which utrace shall we use?
* (1) Built-in kernel utrace (preferred), indicated by
* CONFIG_UTRACE.
* (2) Internal utrace.  Requires STAPCONF_UTRACE_VIA_TRACEPOINTS.
* (3) If we don't have either (old kernels or new kernels without all
* the pre-requisites), error.
*/

#ifndef HAVE_TASK_FINDER
#error "Process probes not available without kernel CONFIG_UTRACE or CONFIG_TRACEPOINTS/CONFIG_ARCH_SUPPORTS_UPROBES/CONFIG_UPROBES. The latter method also requires specific tracepoints and task_work_add()."
#else  /* HAVE_TASK_FINDER */
#if !defined(CONFIG_UTRACE)
#include "task_finder2.c"
#else  /* CONFIG_UTRACE */
#include <linux/utrace.h>
#include <linux/list.h>
#include <linux/binfmts.h>
#include <linux/mount.h>
#ifndef STAPCONF_TASK_UID
#include <linux/cred.h>
#endif
#include "../uidgid_compatibility.h"
#include "syscall.h"
#include "utrace_compatibility.h"
#include "task_finder_map.c"
#include "task_finder_vma.c"

static LIST_HEAD(__stp_task_finder_list);

struct stap_task_finder_target;

#define __STP_TF_UNITIALIZED    0
#define __STP_TF_STARTING    1
#define __STP_TF_RUNNING    2
#define __STP_TF_STOPPING    3
#define __STP_TF_STOPPED    4
static atomic_t __stp_task_finder_state = ATOMIC_INIT(__STP_TF_UNITIALIZED);
static atomic_t __stp_inuse_count = ATOMIC_INIT (0);

#define __stp_tf_handler_start() (atomic_inc(&__stp_inuse_count))
#define __stp_tf_handler_end() (atomic_dec(&__stp_inuse_count))

#ifdef DEBUG_TASK_FINDER
static atomic_t __stp_attach_count = ATOMIC_INIT (0);

#define debug_task_finder_attach() (atomic_inc(&__stp_attach_count))
#define debug_task_finder_detach() (atomic_dec(&__stp_attach_count))
#define debug_task_finder_report() (_stp_dbug(__FUNCTION__, __LINE__, \
                          "attach count: %d, inuse count: %d\n", \
                          atomic_read(&__stp_attach_count), \
                          atomic_read(&__stp_inuse_count)))
#else
#define debug_task_finder_attach()    /* empty */
#define debug_task_finder_detach()    /* empty */
#define debug_task_finder_report()    /* empty */
#endif    /* !DEBUG_TASK_FINDER */

typedef int (*stap_task_finder_callback)(struct stap_task_finder_target *tgt,
                     struct task_struct *tsk,
                     int register_p,
                     int process_p);

typedef int
(*stap_task_finder_mmap_callback)(struct stap_task_finder_target *tgt,
                  struct task_struct *tsk,
                  char *path,
                  struct dentry *dentry,
                  unsigned long addr,
                  unsigned long length,
                  unsigned long offset,
                  unsigned long vm_flags);
typedef int
(*stap_task_finder_munmap_callback)(struct stap_task_finder_target *tgt,
                    struct task_struct *tsk,
                    unsigned long addr,
                    unsigned long length);

typedef int
(*stap_task_finder_mprotect_callback)(struct stap_task_finder_target *tgt,
                      struct task_struct *tsk,
                      unsigned long addr,
                      unsigned long length,
                      int prot);

struct stap_task_finder_target {
/* private: */
    struct list_head list;        /* __stp_task_finder_list linkage */
    struct list_head callback_list_head;
    struct list_head callback_list;
    struct utrace_engine_ops ops;
    size_t pathlen;
    unsigned engine_attached:1;
    unsigned mmap_events:1;
    unsigned munmap_events:1;
    unsigned mprotect_events:1;

/* public: */
    pid_t pid;
    const char *procname;
        const char *purpose;
    stap_task_finder_callback callback;
    stap_task_finder_mmap_callback mmap_callback;
    stap_task_finder_munmap_callback munmap_callback;
    stap_task_finder_mprotect_callback mprotect_callback;
};

#ifdef UTRACE_ORIG_VERSION
static u32
__stp_utrace_task_finder_target_exec(struct utrace_engine *engine,
                     struct task_struct *tsk,
                     const struct linux_binprm *bprm,
                     struct pt_regs *regs);
#else
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_target_exec(u32 action,
                     struct utrace_engine *engine,
                     const struct linux_binfmt *fmt,
                     const struct linux_binprm *bprm,
                     struct pt_regs *regs);
#else
static u32
__stp_utrace_task_finder_target_exec(enum utrace_resume_action action,
                     struct utrace_engine *engine,
                     struct task_struct *tsk,
                     const struct linux_binfmt *fmt,
                     const struct linux_binprm *bprm,
                     struct pt_regs *regs);
#endif
#endif

#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_target_exit(u32 action, struct utrace_engine *engine,
                     long orig_code, long *code);
#else
static u32
__stp_utrace_task_finder_target_exit(struct utrace_engine *engine,
                     struct task_struct *tsk,
                     long orig_code, long *code);
#endif

#ifdef UTRACE_ORIG_VERSION
static u32
__stp_utrace_task_finder_target_quiesce(struct utrace_engine *engine,
                    struct task_struct *tsk);
#else
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_target_quiesce(u32 action,
                    struct utrace_engine *engine,
                    unsigned long event);
#else
static u32
__stp_utrace_task_finder_target_quiesce(enum utrace_resume_action action,
                    struct utrace_engine *engine,
                    struct task_struct *tsk,
                    unsigned long event);
#endif
#endif

#ifdef UTRACE_ORIG_VERSION
static u32
__stp_utrace_task_finder_target_syscall_entry(struct utrace_engine *engine,
                          struct task_struct *tsk,
                          struct pt_regs *regs);
#else
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_target_syscall_entry(u32 action,
                          struct utrace_engine *engine,
                          struct pt_regs *regs);
#else
static u32
__stp_utrace_task_finder_target_syscall_entry(enum utrace_resume_action action,
                          struct utrace_engine *engine,
                          struct task_struct *tsk,
                          struct pt_regs *regs);
#endif
#endif

#ifdef UTRACE_ORIG_VERSION
static u32
__stp_utrace_task_finder_target_syscall_exit(struct utrace_engine *engine,
                         struct task_struct *tsk,
                         struct pt_regs *regs);
#else
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_target_syscall_exit(u32 action,
                         struct utrace_engine *engine,
                         struct pt_regs *regs);
#else
static u32
__stp_utrace_task_finder_target_syscall_exit(enum utrace_resume_action action,
                         struct utrace_engine *engine,
                         struct task_struct *tsk,
                         struct pt_regs *regs);
#endif
#endif

static int
stap_register_task_finder_target(struct stap_task_finder_target *new_tgt)
{
    // Since this __stp_task_finder_list is (currently) only
    // written to in one big setup operation before the task
    // finder process is started, we don't need to lock it.
    struct list_head *node;
    struct stap_task_finder_target *tgt = NULL;
    int found_node = 0;

    if (atomic_read(&__stp_task_finder_state) != __STP_TF_UNITIALIZED) {
        _stp_error("task_finder already started, no new targets allowed");
        return EBUSY;
    }

    if (new_tgt == NULL)
        return EFAULT;

    if (new_tgt->procname != NULL)
        new_tgt->pathlen = strlen(new_tgt->procname);
    else
        new_tgt->pathlen = 0;

    // Make sure everything is initialized properly.
    new_tgt->engine_attached = 0;
    new_tgt->mmap_events = 0;
    new_tgt->munmap_events = 0;
    new_tgt->mprotect_events = 0;
    memset(&new_tgt->ops, 0, sizeof(new_tgt->ops));
    new_tgt->ops.report_exec = &__stp_utrace_task_finder_target_exec;
    new_tgt->ops.report_exit = &__stp_utrace_task_finder_target_exit;
    new_tgt->ops.report_quiesce = &__stp_utrace_task_finder_target_quiesce;
    new_tgt->ops.report_syscall_entry = \
        &__stp_utrace_task_finder_target_syscall_entry;
    new_tgt->ops.report_syscall_exit = \
        &__stp_utrace_task_finder_target_syscall_exit;

    // Search the list for an existing entry for procname/pid.
    list_for_each(node, &__stp_task_finder_list) {
        tgt = list_entry(node, struct stap_task_finder_target, list);
        if (tgt == new_tgt) {
            _stp_error("target already registered");
            return EINVAL;
        }
        if (tgt != NULL
            /* procname-based target */
            && ((new_tgt->pathlen > 0
             && tgt->pathlen == new_tgt->pathlen
             && strcmp(tgt->procname, new_tgt->procname) == 0)
            /* pid-based target (a specific pid or all
             * pids) */
            || (new_tgt->pathlen == 0 && tgt->pathlen == 0
                && tgt->pid == new_tgt->pid))) {
            found_node = 1;
            break;
        }
    }

    // If we didn't find a matching existing entry, add the new
    // target to the task list.
    if (! found_node) {
        INIT_LIST_HEAD(&new_tgt->callback_list_head);
        list_add(&new_tgt->list, &__stp_task_finder_list);
        tgt = new_tgt;
    }

    // Add this target to the callback list for this task.
    list_add_tail(&new_tgt->callback_list, &tgt->callback_list_head);

    // If the new target has any m* callbacks, remember this.
    if (new_tgt->mmap_callback != NULL)
        tgt->mmap_events = 1;
    if (new_tgt->munmap_callback != NULL)
        tgt->munmap_events = 1;
    if (new_tgt->mprotect_callback != NULL)
        tgt->mprotect_events = 1;
    return 0;
}

static int
stap_utrace_detach(struct task_struct *tsk,
           const struct utrace_engine_ops *ops)
{
    struct utrace_engine *engine;
    struct mm_struct *mm;
    int rc = 0;

    // Ignore invalid tasks.
    if (tsk == NULL || tsk->pid <= 0)
        return 0;

#ifdef PF_KTHREAD
    // Ignore kernel threads.  On systems without PF_KTHREAD,
    // we're ok, since kernel threads won't be matched by the
    // utrace_attach_task() call below.
    if (tsk->flags & PF_KTHREAD)
        return 0;
#endif

    // Notice we're not calling get_task_mm() here.  Normally we
    // avoid tasks with no mm, because those are kernel threads.
    // So, why is this function different?  When a thread is in
    // the process of dying, its mm gets freed.  Then, later the
    // thread gets in the dying state and the thread's DEATH event
    // handler gets called (if any).
    //
    // If a thread is in this "mortally wounded" state - no mm
    // but not dead - and at that moment this function is called,
    // we'd miss detaching from it if we were checking to see if
    // it had an mm.

    engine = utrace_attach_task(tsk, UTRACE_ATTACH_MATCH_OPS, ops, 0);
    if (IS_ERR(engine)) {
        rc = -PTR_ERR(engine);
        if (rc != ENOENT) {
            _stp_error("utrace_attach_task returned error %d on pid %d",
                   rc, tsk->pid);
        }
        else {
            rc = 0;
        }
    }
    else if (unlikely(engine == NULL)) {
        _stp_error("utrace_attach returned NULL on pid %d",
               (int)tsk->pid);
        rc = EFAULT;
    }
    else {
        rc = utrace_control(tsk, engine, UTRACE_DETACH);
        switch (rc) {
        case 0:            /* success */
            debug_task_finder_detach();
            break;
        case -ESRCH:        /* REAP callback already begun */
        case -EALREADY:        /* DEATH callback already begun */
            rc = 0;        /* ignore these errors */
            break;
        case -EINPROGRESS:
            do {
                rc = utrace_barrier(tsk, engine);
            } while (rc == -ERESTARTSYS);
            if (rc == 0 || rc == -ESRCH || rc == -EALREADY) {
                rc = 0;
                debug_task_finder_detach();
            } else {
                rc = -rc;
                _stp_error("utrace_barrier returned error %d on pid %d", rc, tsk->pid);
            }
            break;
        default:
            rc = -rc;
            _stp_error("utrace_control returned error %d on pid %d",
                   rc, tsk->pid);
            break;
        }
        utrace_engine_put(engine);
    }
    return rc;
}

static void
stap_utrace_detach_ops(struct utrace_engine_ops *ops)
{
    struct task_struct *grp, *tsk;
    struct utrace_engine *engine;
    pid_t pid = 0;
    int rc = 0;

    // Notice we're not calling get_task_mm() in this loop. In
    // every other instance when calling do_each_thread, we avoid
    // tasks with no mm, because those are kernel threads.  So,
    // why is this function different?  When a thread is in the
    // process of dying, its mm gets freed.  Then, later the
    // thread gets in the dying state and the thread's
    // UTRACE_EVENT(DEATH) event handler gets called (if any).
    //
    // If a thread is in this "mortally wounded" state - no mm
    // but not dead - and at that moment this function is called,
    // we'd miss detaching from it if we were checking to see if
    // it had an mm.

    rcu_read_lock();
    do_each_thread(grp, tsk) {
#ifdef PF_KTHREAD
        // Ignore kernel threads.  On systems without
        // PF_KTHREAD, we're ok, since kernel threads won't be
        // matched by the stap_utrace_detach() call.
        if (tsk->flags & PF_KTHREAD)
            continue;
#endif

        /* Notice we're purposefully ignoring errors from
         * stap_utrace_detach().  Even if we got an error on
         * this task, we need to keep detaching from other
         * tasks.  But warn, we might be unloading and dangling
         * engines are bad news. */
        rc = stap_utrace_detach(tsk, ops);
        if (rc != 0)
            _stp_error("stap_utrace_detach returned error %d on pid %d", rc, tsk->pid);
        WARN_ON(rc != 0);
    } while_each_thread(grp, tsk);
    rcu_read_unlock();
    debug_task_finder_report();
}

static void
__stp_task_finder_cleanup(void)
{
    struct list_head *tgt_node, *tgt_next;
    struct stap_task_finder_target *tgt;

    // Walk the main list, cleaning up as we go.
    list_for_each_safe(tgt_node, tgt_next, &__stp_task_finder_list) {
        tgt = list_entry(tgt_node, struct stap_task_finder_target,
                 list);
        if (tgt == NULL)
            continue;

        if (tgt->engine_attached) {
            stap_utrace_detach_ops(&tgt->ops);
            tgt->engine_attached = 0;
        }

        // Notice we're not walking the callback_list here.
        // There isn't anything to clean up and doing it would
        // mess up callbacks in progress.

        list_del(&tgt->list);
    }
}

static char *
__stp_get_mm_path(struct mm_struct *mm, char *buf, int buflen)
{
    struct file *vm_file;
    char *rc = NULL;

    // The down_read() function can sleep, so we'll call
    // down_read_trylock() instead, which can fail.  If if fails,
    // we'll just pretend this task didn't have a path.
    if (!mm || ! down_read_trylock(&mm->mmap_sem)) {
        *buf = '\0';
        return ERR_PTR(-ENOENT);
    }

    vm_file = stap_find_exe_file(mm);
    if (vm_file) {
#ifdef STAPCONF_DPATH_PATH
        rc = d_path(&(vm_file->f_path), buf, buflen);
#else
        rc = d_path(vm_file->f_dentry, vm_file->f_vfsmnt,
                buf, buflen);
#endif
    }
    else {
        *buf = '\0';
        rc = ERR_PTR(-ENOENT);
    }
    up_read(&mm->mmap_sem);
    return rc;
}

/*
* All user threads get an engine with __STP_TASK_FINDER_EVENTS events
* attached to it so the task_finder layer can monitor new thread
* creation/death.
*/
#define __STP_TASK_FINDER_EVENTS (UTRACE_EVENT(CLONE)        \
                  | UTRACE_EVENT(EXEC)        \
                  | UTRACE_EVENT(EXIT))

/*
* __STP_TASK_BASE_EVENTS: base events for stap_task_finder_target's
* without map callback's
*
* __STP_TASK_VM_BASE_EVENTS: base events for
* stap_task_finder_target's with map callback's
*/
#define __STP_TASK_BASE_EVENTS    (UTRACE_EVENT(EXIT)|UTRACE_EVENT(EXEC))

#define __STP_TASK_VM_BASE_EVENTS (__STP_TASK_BASE_EVENTS    \
                   | UTRACE_EVENT(SYSCALL_ENTRY)\
                   | UTRACE_EVENT(SYSCALL_EXIT))

/*
* All "interesting" threads get an engine with
* __STP_ATTACHED_TASK_EVENTS events attached to it.  After the thread
* quiesces, we reset the events to __STP_ATTACHED_TASK_BASE_EVENTS
* events.
*/
#define __STP_ATTACHED_TASK_EVENTS (UTRACE_EVENT(EXIT)        \
                    | UTRACE_EVENT(QUIESCE))

#define __STP_ATTACHED_TASK_BASE_EVENTS(tgt)            \
    (((tgt)->mmap_events || (tgt)->munmap_events        \
      || (tgt)->mprotect_events)                \
     ? __STP_TASK_VM_BASE_EVENTS : __STP_TASK_BASE_EVENTS)

/* Helper function for __stp_utrace_attach or __stp_utrace_attach_atomic.  */
static int
__stp_utrace_attach_flags(struct task_struct *tsk,
              const struct utrace_engine_ops *ops, void *data,
              unsigned long event_flags,
              int attach_flags,
              enum utrace_resume_action action)
{
    struct utrace_engine *engine;
    int rc = 0;

    // Ignore invalid tasks.
    if (tsk == NULL || tsk->pid <= 0)
        return EPERM;

#ifdef PF_KTHREAD
    // Ignore kernel threads
    if (tsk->flags & PF_KTHREAD)
        return EPERM;
#endif

    // Ignore threads with no mm (which are either kernel threads
    // or "mortally wounded" threads).
    //
    // Note we're not calling get_task_mm()/mmput() here.  Since
    // we're in the the context of that task, the mm should stick
    // around without locking it (and mmput() can sleep).
    if (! tsk->mm)
        return EPERM;

    engine = utrace_attach_task(tsk, UTRACE_ATTACH_CREATE | attach_flags,
                    ops, data);
    if (IS_ERR(engine)) {
        int error = -PTR_ERR(engine);
        if (error != ESRCH && error != ENOENT) {
            _stp_error("utrace_attach returned error %d on pid %d",
                   error, (int)tsk->pid);
            rc = error;
        }
    }
    else if (unlikely(engine == NULL)) {
        _stp_error("utrace_attach returned NULL on pid %d",
               (int)tsk->pid);
        rc = EFAULT;
    }
    else {
        rc = utrace_set_events(tsk, engine, event_flags);
        if (rc == -EINPROGRESS) {
            /*
             * It's running our callback, so we have to
             * synchronize.  We can't keep rcu_read_lock,
             * so the task pointer might die.  But it's
             * safe to call utrace_barrier() even with a
             * stale task pointer, if we have an engine
             * ref.
             */
            do {
                rc = utrace_barrier(tsk, engine);
            } while (rc == -ERESTARTSYS);
            if (rc != 0 && rc != -ESRCH && rc != -EALREADY)
                _stp_error("utrace_barrier returned error %d on pid %d",
                       rc, (int)tsk->pid);
        }
        if (rc == 0) {
            debug_task_finder_attach();

            if (action != UTRACE_RESUME) {
                rc = utrace_control(tsk, engine, action);
                /* If utrace_control() returns
                 * EINPROGRESS when we're trying to
                 * stop/interrupt, that means the task
                 * hasn't stopped quite yet, but will
                 * soon.  Ignore this error. */
                if (rc != 0 && rc != -EINPROGRESS) {
                    _stp_error("utrace_control returned error %d on pid %d",
                           rc, (int)tsk->pid);
                }
                rc = 0;
            }
        }
        else if (rc != -ESRCH && rc != -EALREADY)
            _stp_error("utrace_set_events2 returned error %d on pid %d",
                   rc, (int)tsk->pid);
        utrace_engine_put(engine);
    }
    return rc;
}

static int
__stp_utrace_attach(struct task_struct *tsk,
            const struct utrace_engine_ops *ops, void *data,
            unsigned long event_flags,
            enum utrace_resume_action action)
{
    return __stp_utrace_attach_flags(tsk, ops, data, event_flags,
                     0, action);
}

static int
__stp_utrace_attach_atomic(struct task_struct *tsk,
               const struct utrace_engine_ops *ops, void *data,
               unsigned long event_flags,
               enum utrace_resume_action action)
{
    return __stp_utrace_attach_flags(tsk, ops, data, event_flags,
                     UTRACE_ATTACH_ATOMIC, action);
}

static int
stap_utrace_attach(struct task_struct *tsk,
           const struct utrace_engine_ops *ops, void *data,
           unsigned long event_flags)
{
    return __stp_utrace_attach(tsk, ops, data, event_flags, UTRACE_RESUME);
}

static inline void
__stp_call_callbacks(struct stap_task_finder_target *tgt,
             struct task_struct *tsk, int register_p, int process_p)
{
    struct list_head *cb_node;
    int rc;

    if (tgt == NULL || tsk == NULL)
        return;

    list_for_each(cb_node, &tgt->callback_list_head) {
        struct stap_task_finder_target *cb_tgt;

        cb_tgt = list_entry(cb_node, struct stap_task_finder_target,
                    callback_list);
        if (cb_tgt == NULL || cb_tgt->callback == NULL)
            continue;

        rc = cb_tgt->callback(cb_tgt, tsk, register_p, process_p);
        if (rc != 0) {
            _stp_warn("task_finder %s%scallback for task %d failed: %d",
                                  (cb_tgt->purpose?:""), (cb_tgt->purpose?" ":""),
                                  (int)tsk->pid, rc);
        }
    }
}

static void
__stp_call_mmap_callbacks(struct stap_task_finder_target *tgt,
              struct task_struct *tsk, char *path,
              struct dentry *dentry,
              unsigned long addr, unsigned long length,
              unsigned long offset, unsigned long vm_flags)
{
    struct list_head *cb_node;
    int rc;

    if (tgt == NULL || tsk == NULL)
        return;

    dbug_task_vma(1,
          "pid %d, a/l/o/p/path 0x%lx  0x%lx  0x%lx  %c%c%c%c  %s\n",
          tsk->pid, addr, length, offset,
          vm_flags & VM_READ ? 'r' : '-',
          vm_flags & VM_WRITE ? 'w' : '-',
          vm_flags & VM_EXEC ? 'x' : '-',
          vm_flags & VM_MAYSHARE ? 's' : 'p',
          path);
    list_for_each(cb_node, &tgt->callback_list_head) {
        struct stap_task_finder_target *cb_tgt;

        cb_tgt = list_entry(cb_node, struct stap_task_finder_target,
                    callback_list);
        if (cb_tgt == NULL || cb_tgt->mmap_callback == NULL)
            continue;

        rc = cb_tgt->mmap_callback(cb_tgt, tsk, path, dentry,
                      addr, length, offset, vm_flags);
        if (rc != 0) {
            _stp_warn("task_finder mmap %s%scallback for task %d failed: %d",
                                  (cb_tgt->purpose?:""), (cb_tgt->purpose?" ":""),
                                  (int)tsk->pid, rc);
        }
    }
}


static struct vm_area_struct *
__stp_find_file_based_vma(struct mm_struct *mm, unsigned long addr)
{
    struct vm_area_struct *vma = find_vma(mm, addr);

    // I'm not positive why the checking for vm_start > addr is
    // necessary, but it seems to be (sometimes find_vma() returns
    // a vma that addr doesn't belong to).
    if (vma && (vma->vm_file == NULL || vma->vm_start > addr))
        vma = NULL;
    return vma;
}


static void
__stp_call_mmap_callbacks_with_addr(struct stap_task_finder_target *tgt,
                    struct task_struct *tsk,
                    unsigned long addr)
{
    struct mm_struct *mm;
    struct vm_area_struct *vma;
    char *mmpath_buf = NULL;
    char *mmpath = NULL;
    struct dentry *dentry = NULL;
    unsigned long length = 0;
    unsigned long offset = 0;
    unsigned long vm_flags = 0;

    // __stp_call_mmap_callbacks_with_addr() is only called when
    // tsk is current, so there isn't any danger of mm going
    // away.  So, we don't need to call get_task_mm()/mmput()
    // (which avoids the possibility of sleeping).
    mm = tsk->mm;
    if (! mm)
        return;

    // The down_read() function can sleep, so we'll call
    // down_read_trylock() instead, which can fail.
    if (! down_read_trylock(&mm->mmap_sem))
        return;
    vma = __stp_find_file_based_vma(mm, addr);
    if (vma) {
        // Cache information we need from the vma
        addr = vma->vm_start;
        length = vma->vm_end - vma->vm_start;
        offset = (vma->vm_pgoff << PAGE_SHIFT);
        vm_flags = vma->vm_flags;
        dentry = vma->vm_file->f_dentry;

        // Allocate space for a path
        mmpath_buf = _stp_kmalloc(PATH_MAX);
        if (mmpath_buf == NULL) {
            up_read(&mm->mmap_sem);
            _stp_error("Unable to allocate space for path");
            return;
        }
        else {
            // Grab the path associated with this vma.
#ifdef STAPCONF_DPATH_PATH
            mmpath = d_path(&(vma->vm_file->f_path), mmpath_buf,
                    PATH_MAX);
#else
            mmpath = d_path(vma->vm_file->f_dentry,
                    vma->vm_file->f_vfsmnt, mmpath_buf,
                    PATH_MAX);
#endif
            if (mmpath == NULL || IS_ERR(mmpath)) {
                long err = ((mmpath == NULL) ? 0
                        : -PTR_ERR(mmpath));
                _stp_error("Unable to get path (error %ld) for pid %d",
                       err, (int)tsk->pid);
                mmpath = NULL;
            }
        }
    }

    // At this point, we're done with the vma (assuming we found
    // one).  We can't hold the 'mmap_sem' semaphore while making
    // callbacks.
    up_read(&mm->mmap_sem);

    if (mmpath)
        __stp_call_mmap_callbacks(tgt, tsk, mmpath, dentry, addr,
                      length, offset, vm_flags);

    // Cleanup.
    if (mmpath_buf)
        _stp_kfree(mmpath_buf);
    return;
}


static inline void
__stp_call_munmap_callbacks(struct stap_task_finder_target *tgt,
                struct task_struct *tsk, unsigned long addr,
                unsigned long length)
{
    struct list_head *cb_node;
    int rc;

    if (tgt == NULL || tsk == NULL)
        return;

    list_for_each(cb_node, &tgt->callback_list_head) {
        struct stap_task_finder_target *cb_tgt;

        cb_tgt = list_entry(cb_node, struct stap_task_finder_target,
                    callback_list);
        if (cb_tgt == NULL || cb_tgt->munmap_callback == NULL)
            continue;

        rc = cb_tgt->munmap_callback(cb_tgt, tsk, addr, length);
        if (rc != 0) {
            _stp_warn("task_finder munmap %s%scallback for task %d failed: %d",
                                  (cb_tgt->purpose?:""), (cb_tgt->purpose?" ":""),
                                  (int)tsk->pid, rc);
        }
    }
}

static inline void
__stp_call_mprotect_callbacks(struct stap_task_finder_target *tgt,
                  struct task_struct *tsk, unsigned long addr,
                  unsigned long length, int prot)
{
    struct list_head *cb_node;
    int rc;

    if (tgt == NULL || tsk == NULL)
        return;

    list_for_each(cb_node, &tgt->callback_list_head) {
        struct stap_task_finder_target *cb_tgt;

        cb_tgt = list_entry(cb_node, struct stap_task_finder_target,
                    callback_list);
        if (cb_tgt == NULL || cb_tgt->mprotect_callback == NULL)
            continue;

        rc = cb_tgt->mprotect_callback(cb_tgt, tsk, addr, length,
                           prot);
        if (rc != 0) {
            _stp_warn("task_finder mprotect %s%scallback for task %d failed: %d",
                                  (cb_tgt->purpose?:""), (cb_tgt->purpose?" ":""),
                                  (int)tsk->pid, rc);
        }
    }
}

static inline void
__stp_utrace_attach_match_filename(struct task_struct *tsk,
                   const char * const filename,
                   int process_p)
{
    size_t filelen;
    struct list_head *tgt_node;
    struct stap_task_finder_target *tgt;
    uid_t tsk_euid;

#ifdef STAPCONF_TASK_UID
    tsk_euid = tsk->euid;
#else
#if defined(CONFIG_USER_NS) || (LINUX_VERSION_CODE >= KERNEL_VERSION(3,14,0))
    tsk_euid = from_kuid_munged(current_user_ns(), task_euid(tsk));
#else
    tsk_euid = task_euid(tsk);
#endif
#endif
    filelen = strlen(filename);
    list_for_each(tgt_node, &__stp_task_finder_list) {
        int rc;

        tgt = list_entry(tgt_node, struct stap_task_finder_target,
                 list);
        // If we've got a matching procname or we're probing
        // all threads, we've got a match.  We've got to keep
        // matching since a single thread could match a
        // procname and match an "all thread" probe.
        if (tgt == NULL)
            continue;
        else if (tgt->pathlen > 0
             && (tgt->pathlen != filelen
                 || strcmp(tgt->procname, filename) != 0))
            continue;
        /* Ignore pid-based target, they were handled at startup. */
        else if (tgt->pid != 0)
            continue;
        /* Notice that "pid == 0" (which means to probe all
         * threads) falls through. */

#if ! STP_PRIVILEGE_CONTAINS (STP_PRIVILEGE, STP_PR_STAPDEV) && \
    ! STP_PRIVILEGE_CONTAINS (STP_PRIVILEGE, STP_PR_STAPSYS)
        /* Make sure unprivileged users only probe their own threads. */
        if (_stp_uid != tsk_euid) {
            if (tgt->pid != 0) {
                _stp_warn("Process %d does not belong to unprivileged user %d",
                      tsk->pid, _stp_uid);
            }
            continue;
        }
#endif


        // Set up events we need for attached tasks. We won't
        // actually call the callbacks here - we'll call them
        // when the thread gets quiesced.
        rc = __stp_utrace_attach(tsk, &tgt->ops,
                     tgt,
                     __STP_ATTACHED_TASK_EVENTS,
                     UTRACE_STOP);
        if (rc != 0 && rc != EPERM)
            break;
        tgt->engine_attached = 1;
    }
}

// This function handles the details of getting a task's associated
// procname, and calling __stp_utrace_attach_match_filename() to
// attach to it if we find the procname "interesting".  So, what's the
// difference between path_tsk and match_tsk?  Normally they are the
// same, except in one case.  In an UTRACE_EVENT(EXEC), we need to
// detach engines from the newly exec'ed process (since its path has
// changed).  In this case, we have to match the path of the parent
// (path_tsk) against the child (match_tsk).

static void
__stp_utrace_attach_match_tsk(struct task_struct *path_tsk,
                  struct task_struct *match_tsk, int process_p)
{
    struct mm_struct *mm;
    char *mmpath_buf;
    char *mmpath;

    if (path_tsk == NULL || path_tsk->pid <= 0
        || match_tsk == NULL || match_tsk->pid <= 0)
        return;

    // Grab the path associated with the path_tsk.
    //
    // Note we're not calling get_task_mm()/mmput() here.  Since
    // we're in the the context of path_task, the mm should stick
    // around without locking it (and mmput() can sleep).
    mm = path_tsk->mm;
    if (! mm) {
        /* If the thread doesn't have a mm_struct, it is
         * a kernel thread which we need to skip. */
        return;
    }

    // Allocate space for a path
    mmpath_buf = _stp_kmalloc(PATH_MAX);
    if (mmpath_buf == NULL) {
        _stp_error("Unable to allocate space for path");
        return;
    }

    // Grab the path associated with the new task
    mmpath = __stp_get_mm_path(mm, mmpath_buf, PATH_MAX);
    if (mmpath == NULL || IS_ERR(mmpath)) {
        int rc = -PTR_ERR(mmpath);
        if (rc != ENOENT)
            _stp_error("Unable to get path (error %d) for pid %d",
                   rc, (int)path_tsk->pid);
    }
    else {
        __stp_utrace_attach_match_filename(match_tsk, mmpath,
                           process_p);
    }

    _stp_kfree(mmpath_buf);
    return;
}

#ifdef UTRACE_ORIG_VERSION
static u32
__stp_utrace_task_finder_report_clone(struct utrace_engine *engine,
                      struct task_struct *parent,
                      unsigned long clone_flags,
                      struct task_struct *child)
#else
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_report_clone(u32 action,
                      struct utrace_engine *engine,
                      unsigned long clone_flags,
                      struct task_struct *child)
#else
static u32
__stp_utrace_task_finder_report_clone(enum utrace_resume_action action,
                      struct utrace_engine *engine,
                      struct task_struct *parent,
                      unsigned long clone_flags,
                      struct task_struct *child)
#endif
#endif
{
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
    struct task_struct *parent = current;
#endif
    int rc;

    if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
        debug_task_finder_detach();
        return UTRACE_DETACH;
    }

    __stp_tf_handler_start();

    // On clone, attach to the child.
    rc = __stp_utrace_attach(child, engine->ops, 0,
                 __STP_TASK_FINDER_EVENTS, UTRACE_RESUME);
    if (rc != 0 && rc != EPERM) {
        __stp_tf_handler_end();
        return UTRACE_RESUME;
    }

    __stp_utrace_attach_match_tsk(parent, child,
                      (clone_flags & CLONE_THREAD) == 0);
    __stp_tf_handler_end();
    return UTRACE_RESUME;
}

#ifdef UTRACE_ORIG_VERSION
static u32
__stp_utrace_task_finder_report_exec(struct utrace_engine *engine,
                     struct task_struct *tsk,
                     const struct linux_binprm *bprm,
                     struct pt_regs *regs)
#else
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_report_exec(u32 action,
                     struct utrace_engine *engine,
                     const struct linux_binfmt *fmt,
                     const struct linux_binprm *bprm,
                     struct pt_regs *regs)
#else
static u32
__stp_utrace_task_finder_report_exec(enum utrace_resume_action action,
                     struct utrace_engine *engine,
                     struct task_struct *tsk,
                     const struct linux_binfmt *fmt,
                     const struct linux_binprm *bprm,
                     struct pt_regs *regs)
#endif
#endif
{
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
    struct task_struct *tsk = current;
#endif
    size_t filelen;
    struct list_head *tgt_node;
    struct stap_task_finder_target *tgt;
    int found_node = 0;

    if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
        debug_task_finder_detach();
        return UTRACE_DETACH;
    }

    __stp_tf_handler_start();

    // If the original task was "interesting",
    // __stp_utrace_task_finder_target_exec() will handle calling
    // callbacks.

    // We assume that all exec's are exec'ing a new process.  Note
    // that we don't use bprm->filename, since that path can be
    // relative.
    __stp_utrace_attach_match_tsk(tsk, tsk, 1);

    __stp_tf_handler_end();
    return UTRACE_RESUME;
}


#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
stap_utrace_task_finder_report_exit(u32 action, struct utrace_engine *engine,
                    long orig_code, long *code)
#else
static u32
stap_utrace_task_finder_report_exit(struct utrace_engine *engine,
                    struct task_struct *tsk,
                    long orig_code, long *code)
#endif
{
    debug_task_finder_detach();
    return UTRACE_DETACH;
}

#ifdef UTRACE_ORIG_VERSION
static u32
__stp_utrace_task_finder_target_exec(struct utrace_engine *engine,
                     struct task_struct *tsk,
                     const struct linux_binprm *bprm,
                     struct pt_regs *regs)
#else
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_target_exec(u32 action,
                     struct utrace_engine *engine,
                     const struct linux_binfmt *fmt,
                     const struct linux_binprm *bprm,
                     struct pt_regs *regs)
#else
static u32
__stp_utrace_task_finder_target_exec(enum utrace_resume_action action,
                     struct utrace_engine *engine,
                     struct task_struct *tsk,
                     const struct linux_binfmt *fmt,
                     const struct linux_binprm *bprm,
                     struct pt_regs *regs)
#endif
#endif
{
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
    struct task_struct *tsk = current;
#endif
    struct stap_task_finder_target *tgt = engine->data;
    int rc;

    if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
        debug_task_finder_detach();
        return UTRACE_DETACH;
    }

    __stp_tf_handler_start();

    // We'll hardcode this as a process end.  If a thread
    // calls exec() (which it isn't supposed to), the kernel
    // "promotes" it to being a process.  Call the callbacks.
    if (tgt != NULL && tsk != NULL) {
        __stp_call_callbacks(tgt, tsk, 0, 1);
    }

    // Note that we don't want to set engine_attached to 0 here -
    // only when *all* threads using this engine have been
    // detached.

    // Let __stp_utrace_task_finder_report_exec() call
    // __stp_utrace_attach_match_tsk() to figure out if the
    // exec'ed program is "interesting".

    __stp_tf_handler_end();
    debug_task_finder_detach();
    return UTRACE_DETACH;
}

#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_target_exit(u32 action, struct utrace_engine *engine,
                     long orig_code, long *code)
#else
static u32
__stp_utrace_task_finder_target_exit(struct utrace_engine *engine,
                     struct task_struct *tsk,
                     long orig_code, long *code)
#endif
{
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
    struct task_struct *tsk = current;
#endif
    struct stap_task_finder_target *tgt = engine->data;

    if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
        debug_task_finder_detach();
        return UTRACE_DETACH;
    }

    __stp_tf_handler_start();
    // The first implementation of this added a
    // UTRACE_EVENT(DEATH) handler to
    // __stp_utrace_task_finder_ops.  However, dead threads don't
    // have a mm_struct, so we can't find the exe's path.  So, we
    // don't know which callback(s) to call.
    //
    // So, now when an "interesting" thread is found, we add a
    // separate UTRACE_EVENT(EXIT) handler for each attached
    // handler.
    if (tgt != NULL && tsk != NULL) {
        __stp_call_callbacks(tgt, tsk, 0, (tsk->pid == tsk->tgid));
    }

    __stp_tf_handler_end();
    debug_task_finder_detach();
    return UTRACE_DETACH;
}

static void
__stp_call_mmap_callbacks_for_task(struct stap_task_finder_target *tgt,
                   struct task_struct *tsk)
{
    struct mm_struct *mm;
    char *mmpath_buf;
    char *mmpath;
    struct vm_area_struct *vma;
    int file_based_vmas = 0;
    struct vma_cache_t {
#ifdef STAPCONF_DPATH_PATH
        struct path *f_path;
#else
        struct vfsmount *f_vfsmnt;
#endif
        struct dentry *dentry;
        unsigned long addr;
        unsigned long length;
        unsigned long offset;
        unsigned long vm_flags;
    };
    struct vma_cache_t *vma_cache = NULL;
    struct vma_cache_t *vma_cache_p;

    // Call the mmap_callback for every vma associated with
    // a file.
    //
    // Note we're not calling get_task_mm()/mmput() here.  Since
    // we're in the the context of that task, the mm should stick
    // around without locking it (and mmput() can sleep).
    mm = tsk->mm;
    if (! mm)
        return;

    // Allocate space for a path
    mmpath_buf = _stp_kmalloc(PATH_MAX);
    if (mmpath_buf == NULL) {
        _stp_error("Unable to allocate space for path");
        return;
    }

    // The down_read() function can sleep, so we'll call
    // down_read_trylock() instead, which can fail.
    if (! down_read_trylock(&mm->mmap_sem)) {
        _stp_kfree(mmpath_buf);
        return;
    }

    // First find the number of file-based vmas.
    vma = mm->mmap;
    while (vma) {
        if (vma->vm_file)
            file_based_vmas++;
        vma = vma->vm_next;
    }

    // Now allocate an array to cache vma information in.
    if (file_based_vmas > 0)
        vma_cache = _stp_kmalloc(sizeof(struct vma_cache_t)
                     * file_based_vmas);
    if (vma_cache != NULL) {
        // Loop through the vmas again, and cache needed information.
        vma = mm->mmap;
        vma_cache_p = vma_cache;
        while (vma) {
            if (vma->vm_file) {
#ifdef STAPCONF_DPATH_PATH
                // Notice we're increasing the reference
                // count for 'f_path'.  This way it won't
                // get deleted from out under us.
                vma_cache_p->f_path = &(vma->vm_file->f_path);
                path_get(vma_cache_p->f_path);
#else
                // Notice we're increasing the reference
                // count for 'dentry' and 'f_vfsmnt'.
                // This way they won't get deleted from
                // out under us.
                vma_cache_p->dentry = vma->vm_file->f_dentry;
                dget(vma_cache_p->dentry);
                vma_cache_p->f_vfsmnt = vma->vm_file->f_vfsmnt;
                mntget(vma_cache_p->f_vfsmnt);
#endif
                vma_cache_p->dentry = vma->vm_file->f_dentry;
                vma_cache_p->addr = vma->vm_start;
                vma_cache_p->length = vma->vm_end - vma->vm_start;
                vma_cache_p->offset = (vma->vm_pgoff << PAGE_SHIFT);
                vma_cache_p->vm_flags = vma->vm_flags;
                vma_cache_p++;
            }
            vma = vma->vm_next;
        }
    }

    // At this point, we're done with the vmas (assuming we found
    // any).  We can't hold the 'mmap_sem' semaphore while making
    // callbacks.
    up_read(&mm->mmap_sem);

    if (vma_cache) {
        int i;

        // Loop over our cached information and make callbacks
        // based on it.
        vma_cache_p = vma_cache;
        for (i = 0; i < file_based_vmas; i++) {
#ifdef STAPCONF_DPATH_PATH
            mmpath = d_path(vma_cache_p->f_path, mmpath_buf,
                    PATH_MAX);
            path_put(vma_cache_p->f_path);
#else
            mmpath = d_path(vma_cache_p->dentry,
                    vma_cache_p->f_vfsmnt, mmpath_buf,
                    PATH_MAX);
            dput(vma_cache_p->dentry);
            mntput(vma_cache_p->f_vfsmnt);
#endif
            if (mmpath == NULL || IS_ERR(mmpath)) {
                long err = ((mmpath == NULL) ? 0
                        : -PTR_ERR(mmpath));
                _stp_error("Unable to get path (error %ld) for pid %d",
                       err, (int)tsk->pid);
            }
            else {
                __stp_call_mmap_callbacks(tgt, tsk, mmpath,
                              vma_cache_p->dentry,
                              vma_cache_p->addr,
                              vma_cache_p->length,
                              vma_cache_p->offset,
                              vma_cache_p->vm_flags);
            }
            vma_cache_p++;
        }
        _stp_kfree(vma_cache);
    }

    _stp_kfree(mmpath_buf);
}

#ifdef UTRACE_ORIG_VERSION
static u32
__stp_utrace_task_finder_target_quiesce(struct utrace_engine *engine,
                    struct task_struct *tsk)
#else
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_target_quiesce(u32 action,
                    struct utrace_engine *engine,
                    unsigned long event)
#else
static u32
__stp_utrace_task_finder_target_quiesce(enum utrace_resume_action action,
                    struct utrace_engine *engine,
                    struct task_struct *tsk,
                    unsigned long event)
#endif
#endif
{
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
    struct task_struct *tsk = current;
#endif
    struct stap_task_finder_target *tgt = engine->data;
    int rc;

    if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
        debug_task_finder_detach();
        return UTRACE_DETACH;
    }

    if (tgt == NULL || tsk == NULL) {
        debug_task_finder_detach();
        return UTRACE_DETACH;
    }

    __stp_tf_handler_start();

    // Turn off quiesce handling
    rc = utrace_set_events(tsk, engine,
                   __STP_ATTACHED_TASK_BASE_EVENTS(tgt));

    if (rc == -EINPROGRESS) {
        /*
         * It's running our callback, so we have to
         * synchronize.  We can't keep rcu_read_lock,
         * so the task pointer might die.  But it's
         * safe to call utrace_barrier() even with
         * a stale task pointer, if we have an engine ref.
         */
        do {
            rc = utrace_barrier(tsk, engine);
        } while (rc == -ERESTARTSYS);
        if (rc == 0)
            rc = utrace_set_events(tsk, engine,
                           __STP_ATTACHED_TASK_BASE_EVENTS(tgt));
        else if (rc != -ESRCH && rc != -EALREADY)
            _stp_error("utrace_barrier returned error %d on pid %d",
                   rc, (int)tsk->pid);
    }
    if (rc != 0)
        _stp_error("utrace_set_events returned error %d on pid %d",
               rc, (int)tsk->pid);


    /* Call the callbacks.  Assume that if the thread is a
     * thread group leader, it is a process. */
    __stp_call_callbacks(tgt, tsk, 1, (tsk->pid == tsk->tgid));

    /* If this is just a thread other than the thread group leader,
           don't bother inform map callback clients about its memory map,
           since they will simply duplicate each other. */
    if (tgt->mmap_events == 1 && tsk->tgid == tsk->pid) {
        __stp_call_mmap_callbacks_for_task(tgt, tsk);
    }

    __stp_tf_handler_end();
    return UTRACE_RESUME;
}


#ifdef UTRACE_ORIG_VERSION
static u32
__stp_utrace_task_finder_target_syscall_entry(struct utrace_engine *engine,
                          struct task_struct *tsk,
                          struct pt_regs *regs)
#else
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_target_syscall_entry(u32 action,
                          struct utrace_engine *engine,
                          struct pt_regs *regs)
#else
static u32
__stp_utrace_task_finder_target_syscall_entry(enum utrace_resume_action action,
                          struct utrace_engine *engine,
                          struct task_struct *tsk,
                          struct pt_regs *regs)
#endif
#endif
{
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
    struct task_struct *tsk = current;
#endif
    struct stap_task_finder_target *tgt = engine->data;
    long syscall_no;
    unsigned long args[3] = { 0L };
    int rc;
    int is_mmap_or_mmap2 = 0;
    int is_mprotect = 0;
    int is_munmap = 0;

    if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
        debug_task_finder_detach();
        return UTRACE_DETACH;
    }

    if (tgt == NULL)
        return UTRACE_RESUME;

    // See if syscall is one we're interested in.  On x86_64, this
    // is a potentially expensive operation (since we have to
    // check and see if it is a 32-bit task).  So, cache the
    // results.
    //
    // FIXME: do we need to handle mremap()?
    syscall_no = syscall_get_nr(tsk, regs);
    is_mmap_or_mmap2 = (syscall_no == MMAP_SYSCALL_NO(tsk)
                || syscall_no == MMAP2_SYSCALL_NO(tsk) ? 1 : 0);
    if (!is_mmap_or_mmap2) {
        is_mprotect = (syscall_no == MPROTECT_SYSCALL_NO(tsk) ? 1 : 0);
        if (!is_mprotect) {
            is_munmap = (syscall_no == MUNMAP_SYSCALL_NO(tsk)
                     ? 1 : 0);
        }
    }
    if (!is_mmap_or_mmap2 && !is_mprotect && !is_munmap)
        return UTRACE_RESUME;

    // The syscall is one we're interested in, but do we have a
    // handler for it?
    if ((is_mmap_or_mmap2 && tgt->mmap_events == 0)
        || (is_mprotect && tgt->mprotect_events == 0)
        || (is_munmap && tgt->munmap_events == 0))
        return UTRACE_RESUME;

    // Save the needed arguments.  Note that for mmap, we really
    // just need the return value, so there is no need to save
    // any arguments.
    __stp_tf_handler_start();
    if (is_munmap) {
        // We need 2 arguments for munmap()
        syscall_get_arguments(tsk, regs, 0, 2, args);
    }
    else if (is_mprotect) {
        // We need 3 arguments for mprotect()
        syscall_get_arguments(tsk, regs, 0, 3, args);
    }

    // Remember the syscall information
    rc = __stp_tf_add_map(tsk, syscall_no, args[0], args[1], args[2]);
    if (rc != 0)
        _stp_error("__stp_tf_add_map returned error %d on pid %d",
               rc, tsk->pid);
    __stp_tf_handler_end();
    return UTRACE_RESUME;
}

#ifdef UTRACE_ORIG_VERSION
static u32
__stp_utrace_task_finder_target_syscall_exit(struct utrace_engine *engine,
                         struct task_struct *tsk,
                         struct pt_regs *regs)
#else
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
static u32
__stp_utrace_task_finder_target_syscall_exit(u32 action,
                         struct utrace_engine *engine,
                         struct pt_regs *regs)
#else
static u32
__stp_utrace_task_finder_target_syscall_exit(enum utrace_resume_action action,
                         struct utrace_engine *engine,
                         struct task_struct *tsk,
                         struct pt_regs *regs)
#endif
#endif
{
#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)
    struct task_struct *tsk = current;
#endif
    struct stap_task_finder_target *tgt = engine->data;
    unsigned long rv;
    struct __stp_tf_map_entry *entry;

    if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
        debug_task_finder_detach();
        return UTRACE_DETACH;
    }

    if (tgt == NULL)
        return UTRACE_RESUME;

    // See if we can find saved syscall info.  If we can, it must
    // be one of the syscalls we are interested in (and we must
    // have callbacks to call for it).
    entry = __stp_tf_get_map_entry(tsk);
    if (entry == NULL)
        return UTRACE_RESUME;

    // Get return value
    __stp_tf_handler_start();
    rv = syscall_get_return_value(tsk, regs);

    dbug_task_vma(1,
          "tsk %d found %s(0x%lx), returned 0x%lx\n",
          tsk->pid,
          ((entry->syscall_no == MMAP_SYSCALL_NO(tsk)) ? "mmap"
           : ((entry->syscall_no == MMAP2_SYSCALL_NO(tsk)) ? "mmap2"
              : ((entry->syscall_no == MPROTECT_SYSCALL_NO(tsk))
             ? "mprotect"
             : ((entry->syscall_no == MUNMAP_SYSCALL_NO(tsk))
                ? "munmap"
                : "UNKNOWN")))),
          entry->arg0, rv);

    if (entry->syscall_no == MUNMAP_SYSCALL_NO(tsk)) {
        // Call the callbacks
        __stp_call_munmap_callbacks(tgt, tsk, entry->arg0, entry->arg1);
    }
    else if (entry->syscall_no == MMAP_SYSCALL_NO(tsk)
         || entry->syscall_no == MMAP2_SYSCALL_NO(tsk)) {
        // Call the callbacks
        __stp_call_mmap_callbacks_with_addr(tgt, tsk, rv);
    }
    else {                // mprotect
        // Call the callbacks
        __stp_call_mprotect_callbacks(tgt, tsk, entry->arg0,
                          entry->arg1, entry->arg2);
    }

    __stp_tf_handler_end();
    __stp_tf_remove_map_entry(entry);
    return UTRACE_RESUME;
}

static struct utrace_engine_ops __stp_utrace_task_finder_ops = {
    .report_clone = __stp_utrace_task_finder_report_clone,
    .report_exec = __stp_utrace_task_finder_report_exec,
    .report_exit = stap_utrace_task_finder_report_exit,
};

static int
stap_start_task_finder(void)
{
    int rc = 0;
    struct task_struct *grp, *tsk;
    char *mmpath_buf;
    uid_t tsk_euid;

    if (atomic_inc_return(&__stp_task_finder_state) != __STP_TF_STARTING) {
        atomic_dec(&__stp_task_finder_state);
        _stp_error("task_finder already started");
        return EBUSY;
    }

    mmpath_buf = _stp_kmalloc(PATH_MAX);
    if (mmpath_buf == NULL) {
        _stp_error("Unable to allocate space for path");
        return ENOMEM;
    }

        __stp_tf_map_initialize();

    atomic_set(&__stp_task_finder_state, __STP_TF_RUNNING);

    rcu_read_lock();
    do_each_thread(grp, tsk) {
        struct mm_struct *mm;
        char *mmpath;
        size_t mmpathlen;
        struct list_head *tgt_node;

        /* If in stap -c/-x mode, skip over other processes. */
        if (_stp_target && tsk->tgid != _stp_target)
            continue;

        // Called under lock, so needs atomic.
        rc = __stp_utrace_attach_atomic(tsk,
                     &__stp_utrace_task_finder_ops, 0,
                     __STP_TASK_FINDER_EVENTS,
                     UTRACE_RESUME);
        if (rc == EPERM) {
            /* Ignore EPERM errors, which mean this wasn't
             * a thread we can attach to. */
            rc = 0;
            continue;
        }
        else if (rc != 0) {
            /* If we get a real error, quit. */
            goto stf_err;
        }

        // Grab the path associated with this task.
        //
        // Note we aren't calling get_task_mm()/mmput() here.
        // Instead we're calling task_lock()/task_unlock().
        // We really only need to lock the mm, but mmput() can
        // sleep so we can't call it.  Also note that
        // __stp_get_mm_path() grabs the mmap semaphore, which
        // should also keep us safe.
        task_lock(tsk);
        if (! tsk->mm) {
            /* If the thread doesn't have a mm_struct, it is
             * a kernel thread which we need to skip. */
            continue;
        }
        mmpath = __stp_get_mm_path(tsk->mm, mmpath_buf, PATH_MAX);
        task_unlock(tsk);
        if (mmpath == NULL || IS_ERR(mmpath)) {
            rc = -PTR_ERR(mmpath);
            if (rc == ENOENT) {
                rc = 0;    /* ignore ENOENT */
                continue;
            }
            else {
                _stp_error("Unable to get path (error %d) for pid %d",
                       rc, (int)tsk->pid);
                goto stf_err;
            }
        }

        /* Check the thread's exe's path/pid against our list. */
#ifdef STAPCONF_TASK_UID
        tsk_euid = tsk->euid;
#else
#if defined(CONFIG_USER_NS) || (LINUX_VERSION_CODE >= KERNEL_VERSION(3,14,0))
        tsk_euid = from_kuid_munged(current_user_ns(), task_euid(tsk));
#else
        tsk_euid = task_euid(tsk);
#endif
#endif
        mmpathlen = strlen(mmpath);
        list_for_each(tgt_node, &__stp_task_finder_list) {
            struct stap_task_finder_target *tgt;

            tgt = list_entry(tgt_node,
                     struct stap_task_finder_target, list);
            if (tgt == NULL)
                continue;
            /* procname-based target */
            else if (tgt->pathlen > 0
                 && (tgt->pathlen != mmpathlen
                     || strcmp(tgt->procname, mmpath) != 0))
                 continue;
            /* pid-based target */
            else if (tgt->pid != 0 && tgt->pid != tsk->pid)
                continue;
            /* Notice that "pid == 0" (which means to
             * probe all threads) falls through. */

#if ! STP_PRIVILEGE_CONTAINS (STP_PRIVILEGE, STP_PR_STAPDEV) && \
    ! STP_PRIVILEGE_CONTAINS (STP_PRIVILEGE, STP_PR_STAPSYS)
            /* Make sure unprivileged users only probe their own threads.  */
            if (_stp_uid != tsk_euid) {
                if (tgt->pid != 0 || _stp_target) {
                    _stp_warn("Process %d does not belong to unprivileged user %d",
                          tsk->pid, _stp_uid);
                }
                continue;
            }
#endif

            // Set up events we need for attached tasks.
            // Called under lock, so needs atomic.
            rc = __stp_utrace_attach_atomic(tsk, &tgt->ops, tgt,
                         __STP_ATTACHED_TASK_EVENTS,
                         UTRACE_STOP);
            if (rc != 0 && rc != EPERM)
                goto stf_err;
            rc = 0;        /* ignore EPERM */
            tgt->engine_attached = 1;
        }
    } while_each_thread(grp, tsk);
stf_err:
    rcu_read_unlock();
    _stp_kfree(mmpath_buf);
    debug_task_finder_report(); // report at end for utrace engine counting
    return rc;
}

static void
stap_task_finder_post_init(void)
{
    /* With the original version of utrace UTRACE_STOP also does
     * UTRACE_INTERRUPT, so we don't really need this function. */
#if !defined(UTRACE_ORIG_VERSION)
    struct task_struct *grp, *tsk;

    if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
        _stp_error("task_finder not running?");
        return;
    }

    rcu_read_lock();
    do_each_thread(grp, tsk) {
        struct list_head *tgt_node;

        /* If in stap -c/-x mode, skip over other processes. */
        if (_stp_target && tsk->tgid != _stp_target)
            continue;

        /* Only "poke" thread group leaders. */
        if (tsk->tgid != tsk->pid)
            continue;

        /* See if we need to "poke" this thread. */
        list_for_each(tgt_node, &__stp_task_finder_list) {
            struct stap_task_finder_target *tgt;
            struct utrace_engine *engine;

            tgt = list_entry(tgt_node,
                     struct stap_task_finder_target, list);
            if (tgt == NULL || !tgt->engine_attached)
                continue;

            // If we found an "interesting" task earlier,
            // stop it.
            engine = utrace_attach_task(tsk,
                            UTRACE_ATTACH_MATCH_OPS,
                            &tgt->ops, tgt);
            if (engine != NULL && !IS_ERR(engine)) {
                /* We found a target task. Stop it. */
                int rc = utrace_control(tsk, engine,
                            UTRACE_INTERRUPT);
                /* If utrace_control() returns
                 * EINPROGRESS when we're trying to
                 * stop/interrupt, that means the task
                 * hasn't stopped quite yet, but will
                 * soon.  Ignore this error. */
                if (rc != 0 && rc != -EINPROGRESS) {
                    _stp_error("utrace_control returned error %d on pid %d",
                           rc, (int)tsk->pid);
                }
                utrace_engine_put(engine);

                /* Since we only need to interrupt
                 * the task once, not once per
                 * engine, get out of this loop. */
                break;
            }
        }
    } while_each_thread(grp, tsk);
    rcu_read_unlock();
#endif
    return;
}


static void
stap_stop_task_finder(void)
{
#ifdef DEBUG_TASK_FINDER
    int i = 0;
#endif

    if (atomic_read(&__stp_task_finder_state) == __STP_TF_UNITIALIZED)
        return;

    atomic_set(&__stp_task_finder_state, __STP_TF_STOPPING);
    debug_task_finder_report();
    stap_utrace_detach_ops(&__stp_utrace_task_finder_ops);
    __stp_task_finder_cleanup();
    debug_task_finder_report();
    atomic_set(&__stp_task_finder_state, __STP_TF_STOPPED);

    /* Now that all the engines are detached, make sure
     * all the callbacks are finished.  If they aren't, we'll
     * crash the kernel when the module is removed. */
    while (atomic_read(&__stp_inuse_count) != 0) {
        schedule();
#ifdef DEBUG_TASK_FINDER
        i++;
#endif
    }
#ifdef DEBUG_TASK_FINDER
    if (i > 0)
        printk(KERN_ERR "it took %d polling loops to quit.\n", i);
#endif
    debug_task_finder_report();
}

#endif /* CONFIG_UTRACE */
#endif /* HAVE_TASK_FINDER */
#endif /* TASK_FINDER_C */