gdb/i386-nto-tdep.c - gdb

Global variables defined

Functions defined

Macros defined

Source code

  1. /* Target-dependent code for QNX Neutrino x86.

  2.    Copyright (C) 2003-2015 Free Software Foundation, Inc.

  3.    Contributed by QNX Software Systems Ltd.

  4.    This file is part of GDB.

  5.    This program is free software; you can redistribute it and/or modify
  6.    it under the terms of the GNU General Public License as published by
  7.    the Free Software Foundation; either version 3 of the License, or
  8.    (at your option) any later version.

  9.    This program is distributed in the hope that it will be useful,
  10.    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11.    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12.    GNU General Public License for more details.

  13.    You should have received a copy of the GNU General Public License
  14.    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

  15. #include "defs.h"
  16. #include "frame.h"
  17. #include "osabi.h"
  18. #include "regcache.h"
  19. #include "target.h"

  20. #include "i386-tdep.h"
  21. #include "i387-tdep.h"
  22. #include "nto-tdep.h"
  23. #include "solib.h"
  24. #include "solib-svr4.h"

  25. #ifndef X86_CPU_FXSR
  26. #define X86_CPU_FXSR (1L << 12)
  27. #endif

  28. /* Why 13?  Look in our /usr/include/x86/context.h header at the
  29.    x86_cpu_registers structure and you'll see an 'exx' junk register
  30.    that is just filler.  Don't ask me, ask the kernel guys.  */
  31. #define NUM_GPREGS 13

  32. /* Mapping between the general-purpose registers in `struct xxx'
  33.    format and GDB's register cache layout.  */

  34. /* From <x86/context.h>.  */
  35. static int i386nto_gregset_reg_offset[] =
  36. {
  37.   7 * 4,                        /* %eax */
  38.   6 * 4,                        /* %ecx */
  39.   5 * 4,                        /* %edx */
  40.   4 * 4,                        /* %ebx */
  41.   11 * 4,                        /* %esp */
  42.   2 * 4,                        /* %epb */
  43.   1 * 4,                        /* %esi */
  44.   0 * 4,                        /* %edi */
  45.   8 * 4,                        /* %eip */
  46.   10 * 4,                        /* %eflags */
  47.   9 * 4,                        /* %cs */
  48.   12 * 4,                        /* %ss */
  49.   -1                                /* filler */
  50. };

  51. /* Given a GDB register number REGNUM, return the offset into
  52.    Neutrino's register structure or -1 if the register is unknown.  */

  53. static int
  54. nto_reg_offset (int regnum)
  55. {
  56.   if (regnum >= 0 && regnum < ARRAY_SIZE (i386nto_gregset_reg_offset))
  57.     return i386nto_gregset_reg_offset[regnum];

  58.   return -1;
  59. }

  60. static void
  61. i386nto_supply_gregset (struct regcache *regcache, char *gpregs)
  62. {
  63.   struct gdbarch *gdbarch = get_regcache_arch (regcache);
  64.   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  65.   gdb_assert (tdep->gregset_reg_offset == i386nto_gregset_reg_offset);
  66.   i386_gregset.supply_regset (&i386_gregset, regcache, -1,
  67.                               gpregs, NUM_GPREGS * 4);
  68. }

  69. static void
  70. i386nto_supply_fpregset (struct regcache *regcache, char *fpregs)
  71. {
  72.   if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
  73.     i387_supply_fxsave (regcache, -1, fpregs);
  74.   else
  75.     i387_supply_fsave (regcache, -1, fpregs);
  76. }

  77. static void
  78. i386nto_supply_regset (struct regcache *regcache, int regset, char *data)
  79. {
  80.   switch (regset)
  81.     {
  82.     case NTO_REG_GENERAL:
  83.       i386nto_supply_gregset (regcache, data);
  84.       break;
  85.     case NTO_REG_FLOAT:
  86.       i386nto_supply_fpregset (regcache, data);
  87.       break;
  88.     }
  89. }

  90. static int
  91. i386nto_regset_id (int regno)
  92. {
  93.   if (regno == -1)
  94.     return NTO_REG_END;
  95.   else if (regno < I386_NUM_GREGS)
  96.     return NTO_REG_GENERAL;
  97.   else if (regno < I386_NUM_GREGS + I387_NUM_REGS)
  98.     return NTO_REG_FLOAT;
  99.   else if (regno < I386_SSE_NUM_REGS)
  100.     return NTO_REG_FLOAT; /* We store xmm registers in fxsave_area.  */

  101.   return -1;                        /* Error.  */
  102. }

  103. static int
  104. i386nto_register_area (struct gdbarch *gdbarch,
  105.                        int regno, int regset, unsigned *off)
  106. {
  107.   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  108.   *off = 0;
  109.   if (regset == NTO_REG_GENERAL)
  110.     {
  111.       if (regno == -1)
  112.         return NUM_GPREGS * 4;

  113.       *off = nto_reg_offset (regno);
  114.       if (*off == -1)
  115.         return 0;
  116.       return 4;
  117.     }
  118.   else if (regset == NTO_REG_FLOAT)
  119.     {
  120.       unsigned off_adjust, regsize, regset_size, regno_base;
  121.       /* The following are flags indicating number in our fxsave_area.  */
  122.       int first_four = (regno >= I387_FCTRL_REGNUM (tdep)
  123.                         && regno <= I387_FISEG_REGNUM (tdep));
  124.       int second_four = (regno > I387_FISEG_REGNUM (tdep)
  125.                          && regno <= I387_FOP_REGNUM (tdep));
  126.       int st_reg = (regno >= I387_ST0_REGNUM (tdep)
  127.                     && regno < I387_ST0_REGNUM (tdep) + 8);
  128.       int xmm_reg = (regno >= I387_XMM0_REGNUM (tdep)
  129.                      && regno < I387_MXCSR_REGNUM (tdep));

  130.       if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
  131.         {
  132.           off_adjust = 32;
  133.           regsize = 16;
  134.           regset_size = 512;
  135.           /* fxsave_area structure.  */
  136.           if (first_four)
  137.             {
  138.               /* fpu_control_word, fpu_status_word, fpu_tag_word, fpu_operand
  139.                  registers.  */
  140.               regsize = 2; /* Two bytes each.  */
  141.               off_adjust = 0;
  142.               regno_base = I387_FCTRL_REGNUM (tdep);
  143.             }
  144.           else if (second_four)
  145.             {
  146.               /* fpu_ip, fpu_cs, fpu_op, fpu_ds registers.  */
  147.               regsize = 4;
  148.               off_adjust = 8;
  149.               regno_base = I387_FISEG_REGNUM (tdep) + 1;
  150.             }
  151.           else if (st_reg)
  152.             {
  153.               /* ST registers.  */
  154.               regsize = 16;
  155.               off_adjust = 32;
  156.               regno_base = I387_ST0_REGNUM (tdep);
  157.             }
  158.           else if (xmm_reg)
  159.             {
  160.               /* XMM registers.  */
  161.               regsize = 16;
  162.               off_adjust = 160;
  163.               regno_base = I387_XMM0_REGNUM (tdep);
  164.             }
  165.           else if (regno == I387_MXCSR_REGNUM (tdep))
  166.             {
  167.               regsize = 4;
  168.               off_adjust = 24;
  169.               regno_base = I387_MXCSR_REGNUM (tdep);
  170.             }
  171.           else
  172.             {
  173.               /* Whole regset.  */
  174.               gdb_assert (regno == -1);
  175.               off_adjust = 0;
  176.               regno_base = 0;
  177.               regsize = regset_size;
  178.             }
  179.         }
  180.       else
  181.         {
  182.           regset_size = 108;
  183.           /* fsave_area structure.  */
  184.           if (first_four || second_four)
  185.             {
  186.               /* fpu_control_word, ... , fpu_ds registers.  */
  187.               regsize = 4;
  188.               off_adjust = 0;
  189.               regno_base = I387_FCTRL_REGNUM (tdep);
  190.             }
  191.           else if (st_reg)
  192.             {
  193.               /* One of ST registers.  */
  194.               regsize = 10;
  195.               off_adjust = 7 * 4;
  196.               regno_base = I387_ST0_REGNUM (tdep);
  197.             }
  198.           else
  199.             {
  200.               /* Whole regset.  */
  201.               gdb_assert (regno == -1);
  202.               off_adjust = 0;
  203.               regno_base = 0;
  204.               regsize = regset_size;
  205.             }
  206.         }

  207.       if (regno != -1)
  208.         *off = off_adjust + (regno - regno_base) * regsize;
  209.       else
  210.         *off = 0;
  211.       return regsize;
  212.     }
  213.   return -1;
  214. }

  215. static int
  216. i386nto_regset_fill (const struct regcache *regcache, int regset, char *data)
  217. {
  218.   if (regset == NTO_REG_GENERAL)
  219.     {
  220.       int regno;

  221.       for (regno = 0; regno < NUM_GPREGS; regno++)
  222.         {
  223.           int offset = nto_reg_offset (regno);
  224.           if (offset != -1)
  225.             regcache_raw_collect (regcache, regno, data + offset);
  226.         }
  227.     }
  228.   else if (regset == NTO_REG_FLOAT)
  229.     {
  230.       if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
  231.         i387_collect_fxsave (regcache, -1, data);
  232.       else
  233.         i387_collect_fsave (regcache, -1, data);
  234.     }
  235.   else
  236.     return -1;

  237.   return 0;
  238. }

  239. /* Return whether THIS_FRAME corresponds to a QNX Neutrino sigtramp
  240.    routine.  */

  241. static int
  242. i386nto_sigtramp_p (struct frame_info *this_frame)
  243. {
  244.   CORE_ADDR pc = get_frame_pc (this_frame);
  245.   const char *name;

  246.   find_pc_partial_function (pc, &name, NULL, NULL);
  247.   return name && strcmp ("__signalstub", name) == 0;
  248. }

  249. /* Assuming THIS_FRAME is a QNX Neutrino sigtramp routine, return the
  250.    address of the associated sigcontext structure.  */

  251. static CORE_ADDR
  252. i386nto_sigcontext_addr (struct frame_info *this_frame)
  253. {
  254.   struct gdbarch *gdbarch = get_frame_arch (this_frame);
  255.   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  256.   gdb_byte buf[4];
  257.   CORE_ADDR ptrctx;

  258.   /* We store __ucontext_t addr in EDI register.  */
  259.   get_frame_register (this_frame, I386_EDI_REGNUM, buf);
  260.   ptrctx = extract_unsigned_integer (buf, 4, byte_order);
  261.   ptrctx += 24 /* Context pointer is at this offset.  */;

  262.   return ptrctx;
  263. }

  264. static void
  265. init_i386nto_ops (void)
  266. {
  267.   nto_regset_id = i386nto_regset_id;
  268.   nto_supply_gregset = i386nto_supply_gregset;
  269.   nto_supply_fpregset = i386nto_supply_fpregset;
  270.   nto_supply_altregset = nto_dummy_supply_regset;
  271.   nto_supply_regset = i386nto_supply_regset;
  272.   nto_register_area = i386nto_register_area;
  273.   nto_regset_fill = i386nto_regset_fill;
  274.   nto_fetch_link_map_offsets =
  275.     svr4_ilp32_fetch_link_map_offsets;
  276. }

  277. static void
  278. i386nto_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
  279. {
  280.   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  281.   static struct target_so_ops nto_svr4_so_ops;

  282.   /* Deal with our strange signals.  */
  283.   nto_initialize_signals ();

  284.   /* NTO uses ELF.  */
  285.   i386_elf_init_abi (info, gdbarch);

  286.   /* Neutrino rewinds to look more normal.  Need to override the i386
  287.      default which is [unfortunately] to decrement the PC.  */
  288.   set_gdbarch_decr_pc_after_break (gdbarch, 0);

  289.   tdep->gregset_reg_offset = i386nto_gregset_reg_offset;
  290.   tdep->gregset_num_regs = ARRAY_SIZE (i386nto_gregset_reg_offset);
  291.   tdep->sizeof_gregset = NUM_GPREGS * 4;

  292.   tdep->sigtramp_p = i386nto_sigtramp_p;
  293.   tdep->sigcontext_addr = i386nto_sigcontext_addr;
  294.   tdep->sc_reg_offset = i386nto_gregset_reg_offset;
  295.   tdep->sc_num_regs = ARRAY_SIZE (i386nto_gregset_reg_offset);

  296.   /* Setjmp()'s return PC saved in EDX (5).  */
  297.   tdep->jb_pc_offset = 20;        /* 5x32 bit ints in.  */

  298.   set_solib_svr4_fetch_link_map_offsets
  299.     (gdbarch, svr4_ilp32_fetch_link_map_offsets);

  300.   /* Initialize this lazily, to avoid an initialization order
  301.      dependency on solib-svr4.c's _initialize routine.  */
  302.   if (nto_svr4_so_ops.in_dynsym_resolve_code == NULL)
  303.     {
  304.       nto_svr4_so_ops = svr4_so_ops;

  305.       /* Our loader handles solib relocations differently than svr4.  */
  306.       nto_svr4_so_ops.relocate_section_addresses
  307.         = nto_relocate_section_addresses;

  308.       /* Supply a nice function to find our solibs.  */
  309.       nto_svr4_so_ops.find_and_open_solib
  310.         = nto_find_and_open_solib;

  311.       /* Our linker code is in libc.  */
  312.       nto_svr4_so_ops.in_dynsym_resolve_code
  313.         = nto_in_dynsym_resolve_code;
  314.     }
  315.   set_solib_ops (gdbarch, &nto_svr4_so_ops);
  316. }

  317. /* Provide a prototype to silence -Wmissing-prototypes.  */
  318. extern initialize_file_ftype _initialize_i386nto_tdep;

  319. void
  320. _initialize_i386nto_tdep (void)
  321. {
  322.   init_i386nto_ops ();
  323.   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_QNXNTO,
  324.                           i386nto_init_abi);
  325.   gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_elf_flavour,
  326.                                   nto_elf_osabi_sniffer);
  327. }