Introduction to
off-CPU Time Flame Graphs

© agentzh@cloudflare.com ®
Yichun Zhang (agentzh)

2013.08.22

\ Classic Flame Graphs are
on-CPU time Flame Graphs per se.

\ We are already relying on them to optimize
our Lua WAF & Lua CDN Brain (cfcheck)

Flame Graph for antirez's lua-cmsgpack's unpack() { without Tahle Pre-Allocation Optimizations)

-

\ I invented off-CPU time Flame Graphs
somewhere near Lake Tahoe 3 months ago.

on-GP Y

< off-CPU

)

\ fp'ﬂ’lﬂ:ﬂéﬁ

on -CPU

\/ 1 got the inspiration
from Brendan Gregg's blog post
"Off-CPU Performance Analysis"

http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/

http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/

\/ Joshua Dankbaar grabbed me for an online issue
right after the company Kitchen Adventure.

\/ Time to cast a spell over our Linux boxes by systemtap!

I quickly wrote a macro-style language extension
named stap++ for systemtap with a little bit of Perl.

https://github.com/agentzh/stapxx

https://github.com/agentzh/stapxx

or _,;m-

servors

\V Nginx workers were badly blocking by something
in a production box in Ashburn

/* pseudo-
code for the nginx event loop */

for (;;) {
ret epoll_wait(...);
/* process new events
and expired timers here... */

\” Let's write a simple tool to trace the long blocking
latencies in the Nginx event loop!

$ vim epoll-looop-blocking.sxx

#1/usr/bin/env stap++
global begin
probe syscall.epoll_wait.return {

if (target() == pid()) { begin gettimeofday_ms() }

}
probe syscall.epoll_wait {

if (target() == pid() && begin > 0) {
elapsed = gettimeofday_ms() - begin
if (elapsed >= $Marg limit :default(200)) {
printf("[%d] epoll loop blocked for %dms\n",
gettimeofday_s(), elapsed)

$./epoll-loop-blocking.sxx -x 22845 --arg limit=200
Start tracing 22845...

(1376595038] epoll loop blocked for 208ms
(1376595040] epoll loop blocked for 485ms
(1376595044] epoll loop blocked for 336ms
[(1376595049] epoll loop blocked for 734ms
[1376595057] epoll loop blocked for 379ms
(1376595061] epoll loop blocked for 227ms
[1376595062] epoll loop blocked for 212ms
(1376595066] epoll loop blocked for 390ms

\/ Is it file 10O blocking here?

add some code to trace file IO latency at the same time...

global vfs_begin

global vfs_latency

probe syscall.rename, syscall.open, syscall.sendfile*,
vfs.read, vfs.write

if (target() == pid()) { vfs_begin = gettimeofday_us() }
}
probe syscall.rename.return, syscall.open.return,

syscall.sendfile*.return, vfs.read.return, vfs.write.return

if (target() == pid()) {
vfs_latency += gettimeofday us() - vfs_begin

$./epoll-loop-blocking-vfs.sxx -x 22845 --arg limit=200
Start tracing 22845...

[1376596251] epoll loop blocked for 364ms (file IO: 19ms)
[1376596266] epoll loop blocked for 288ms (file IO: Oms)
[1376596270] epoll loop blocked for 1002ms (file IO: Oms)
[1376596272] epoll loop blocked for 206ms (file IO: 5ms)
[1376596280] epoll loop blocked for 218ms (file IO: 211ms)
[1376596283] epoll loop blocked for 396ms (file IO: 9ms)

\/ Hmm...seems like file 1O is
not the major factor here...

\/ I suddenly remember my off-CPU time
Flame Graph tool created 3 months ago...

https://github.com/agentzh/nginx-systemtap-toolkit#ngx-sample-bt-off-cpu

https://github.com/agentzh/nginx-systemtap-toolkit#ngx-sample-bt-off-cpu

$./ngx-sample-bt-off-cpu -t 10 -x 16782 > a.bt

$ stackcollapse-stap.pl a.bt > a.cht
$ flamegraph.pl a.cbt > a.svg

off-CPU Time Flame Graph for 10 sec for nginx-cache (16m3)

\” Okay, Nginx was mainly waiting on a lock
in an obsolete code path which was added to Nginx
by one of us (long time ago?)

\ Let's just remove the guilty code path
from our production system!

¢’ Yay! The number of long-running requests
(longer than 1 second) is almost halved!

200pm 400 pm 6:00 pm B:00 pm

$./epoll-loop-blocking-vfs.sxx
Start tracing 16738...

[1376626387]
[1376626388]
[1376626396]
[1376626402]
[1376626414]

epoll loop blocked
epoll loop blocked
epoll loop blocked
epoll loop blocked
epoll loop blocked

-X 16738 --arg limit=200

for
for
for
for
for

456ms
207ms
364ms
350ms
309ms

(file
(file
(file
(file
(file

I0:
I0:
I0:
I0:
I0:

455ms)
206ms)
363ms)
349ms)
309ms)

off-CPU Time Flame Graph for 10 sec for nginx-cache {16m3) - V2

AR R A prE R

LI e L L N L ==y}

ey

\/ Okay, now it is file IO that's killing us!

\ Let's tune Nginx's open_file_cache configurations
to save the open() system calls.

\” But...wait...we have not even
enabled it yet in production...

2520 is the nginx worker process's pid
$ stap++ -x 2520 \

-e 'probe @pfunc(ngx_open_cached_file)
{printf("%p\n",6 $cache);exit()}"'

0x0

\/ It is faster and more accurate than
asking Dane to check nginx.contf.

\/ Let's start by using the sample configuration
in Nginx's official documentation.

file nginx.conf
open_file_cache max=1000 inactive=20s;

\” Yay! Our online metrics immediately showed
even better numbers!

\ What is the cache hit rate then?
Can we improve the cache configurations even further?

#1/usr/bin/env stap++
global misses, total, in_ctx
probe @pfunc(ngx_open_cached_file) {
if (pid() == target()) { in_ctx = 1 total++ }
}
probe @pfunc(ngx_open_cached_file).return {
if (pid() == target()) { in_ctx = 0 }

}
probe @pfunc(ngx_open_and_stat_file) {
if (pid() == target() && in_ctx) { misses++ }
}
probe end {
printf("nginx open file cache miss rate: %d%%\n", misses * 100 / total)

$./ngx-open-file-cache-misses.sxx -
X 19642

WARNING: Start tracing process 19642...
Hit Ctrl-C to end.

NG

nginx open file cache miss rate: 91%

\” So only 9% ~ 10% cache hit rate
for open_{file_cache in our production systems.

' Let's double the cache size!

file nginx.conf
open_file_cache max=2000 inactive=180s;

$./ngx-open-file-cache-misses.sxx -
X 7818

WARNING: Start tracing process 7818...
Hit Ctrl-C to end.

NC

nginx open file cache miss rate: 79%

\” Yay! The cache hit rate is also doubled!
21% Now!

\/ Lee said, "try 50k!"

\” Even a cache size of 20k did not fly.
The over-all performance was dropping!

off-CPU Time Flame Graph for 10 sec for nginx-cache {16m3) - V4
‘sendfilasd

n.
| "
|
n.
n.
A
el

\” So Nginx's open_file_cache is hopelessly
waiting on shm /locks
when the cache size is large.

\” So Flame Graphs saved us again ©

\” When we are focusing on optimizing one metric,
we might introduce new bigger bottleneck
by accident.

\/ Flame Graphs can always give us
the whole picture.

(’ Optimizations are also all about balance.

\” Nginx's open_file_cache is already a dead end.
Let's focus on file 10 itself instead.

$./func-latency-distr.sxx -x 18243 --arg func=syscall.open --
arg time=20

Start tracing 18243...
Please wait for 20 seconds.

Distribution of sys open latencies (in microseconds)

max/avg/min: 565270/2225/5

64

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288

| 000EEEEEEEEEEEEECEEEEEEEEEECACACACAEAEEEEEEEEREEE
| @eeEEEEEEEEEEE

| @000EEEEEEEEEEEEEEEEEECEEEEEEAREEEA

| @ee@

I

| @eeeEeEERE

| @eeeeee

@

I

150
119
21
14

10

B 0 W A~ O© W

(Knowing how the latency of individual file IO operations
is distributed, we can trace the details of those "slow samples".

$./slow-vfs-reads.sxx -x 6954 --arg limit=100
Start tracing 6954...
Hit Ctrl-C to end.

[1377049930]
[1377049934]
[1377049945]
[1377049947]
[1377049949]
[1377049949]
[1377049949]
[1377049950]

latency=481ms
latency=497ms
latency=234ms
latency=995ms
latency=208ms
latency=430ms
latency=338ms
latency=511ms

dev=sdel
dev=sdc1l
dev=sdf1
dev=sdb1l
dev=sdel
dev=sdel
dev=sdd1l
dev=sdc1l

bytes_read=350 err=0 errstr=
bytes_read=426 err=0 errstr=
bytes_read=519 err=0 errstr=
bytes_read=311 err=0 errstr=
bytes_read=594 err=0 errstr=

bytes_read=4096 err=0 errstr
bytes_read=402 err=0 errstr=
bytes_read=5799 err=0 errstr=

(/' So the slow samples are distributed evenly among all the disk drives,
and the data volumn involved in each call is also quite small.

\/ Kernel-level off-CPU Flame Graphs

$./ngx-sample-bt-off-cpu -p 7635 -k -
t 10 > a.bt

Kernel-land off-CPU Time Flame Graph for 20 sec for nginx-cache { 16m3) - V1

W)
K
®| _schedule

B do_sync_read

\/ I love Flame Graphs because
they are one kind of visualizations
that are truly actionable.

Credits

Thanks Brendan Gregg for inventing Flame Graphs.

Thanks systemtap which was created after dtrace.

Thanks Joshua Dankbaar for walking me through
our production environment.

Thanks Ian Applegate for supporting use of
systemtap in production.

Thanks Dane for pushing everyone onto the same page.

Systems and systems' laws lay hid in night.
God said, "let dtrace be!" and all was light.

© Any questions? ©

