runtime/linux/uprobes2/uprobes_x86.c - systemtap

Global variables defined

Functions defined

Macros defined

Source code

/*
*  Userspace Probes (UProbes)
*  uprobes.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
* Copyright (C) IBM Corporation, 2006-2008
*/
/*
* In versions of uprobes built in the SystemTap runtime, this file
* is #included at the end of uprobes.c.
*/
#include <asm/uaccess.h>

#ifdef CONFIG_X86_32
#define is_32bit_app(tsk) 1
#else
#define is_32bit_app(tsk) (test_tsk_thread_flag(tsk, TIF_IA32))
#endif

/* Adapted from arch/x86_64/kprobes.c */
#undef W
#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)              \
    (((b0##ULL<< 0x0)|(b1##ULL<< 0x1)|(b2##ULL<< 0x2)|(b3##ULL<< 0x3) |   \
      (b4##ULL<< 0x4)|(b5##ULL<< 0x5)|(b6##ULL<< 0x6)|(b7##ULL<< 0x7) |   \
      (b8##ULL<< 0x8)|(b9##ULL<< 0x9)|(ba##ULL<< 0xa)|(bb##ULL<< 0xb) |   \
      (bc##ULL<< 0xc)|(bd##ULL<< 0xd)|(be##ULL<< 0xe)|(bf##ULL<< 0xf))    \
     << (row % 64))

static const volatile u64 good_insns_64[256 / 64] = {
    /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
    /*      -------------------------------         */
    W(0x00, 1,1,1,1,1,1,0,0,1,1,1,1,1,1,0,0)| /* 00 */
    W(0x10, 1,1,1,1,1,1,0,0,1,1,1,1,1,1,0,0)| /* 10 */
    W(0x20, 1,1,1,1,1,1,0,0,1,1,1,1,1,1,0,0)| /* 20 */
    W(0x30, 1,1,1,1,1,1,0,0,1,1,1,1,1,1,0,0), /* 30 */
    W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
    W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 50 */
    W(0x60, 0,0,0,1,1,1,0,0,1,1,1,1,0,0,0,0)| /* 60 */
    W(0x70, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 70 */
    W(0x80, 1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
    W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 90 */
    W(0xa0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* a0 */
    W(0xb0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* b0 */
    W(0xc0, 1,1,1,1,0,0,1,1,1,1,1,1,0,0,0,0)| /* c0 */
    W(0xd0, 1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,1)| /* d0 */
    W(0xe0, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* e0 */
    W(0xf0, 0,0,1,1,0,1,1,1,1,1,0,0,1,1,1,1/* f0 */
    /*      -------------------------------         */
    /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
};

/* Good-instruction tables for 32-bit apps -- copied from i386 uprobes */

static const volatile u64 good_insns_32[256 / 64] = {
    /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
    /*      -------------------------------         */
    W(0x00, 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0)| /* 00 */
    W(0x10, 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0)| /* 10 */
    W(0x20, 1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1)| /* 20 */
    W(0x30, 1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1), /* 30 */
    W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
    W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 50 */
    W(0x60, 1,1,1,0,1,1,0,0,1,1,1,1,0,0,0,0)| /* 60 */
    W(0x70, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 70 */
    W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
    W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 90 */
    W(0xa0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* a0 */
    W(0xb0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* b0 */
    W(0xc0, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0)| /* c0 */
    W(0xd0, 1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1)| /* d0 */
    W(0xe0, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* e0 */
    W(0xf0, 0,0,1,1,0,1,1,1,1,1,0,0,1,1,1,1/* f0 */
    /*      -------------------------------         */
    /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
};

/* Using this for both 64-bit and 32-bit apps */
static const volatile u64 good_2byte_insns[256 / 64] = {
    /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
    /*      -------------------------------         */
    W(0x00, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1)| /* 00 */
    W(0x10, 1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1)| /* 10 */
    W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* 20 */
    W(0x30, 0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
    W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
    W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 50 */
    W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 60 */
    W(0x70, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
    W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
    W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 90 */
    W(0xa0, 1,1,1,1,1,1,0,0,1,1,1,1,1,1,0,1)| /* a0 */
    W(0xb0, 1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1), /* b0 */
    W(0xc0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* c0 */
    W(0xd0, 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* d0 */
    W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* e0 */
    W(0xf0, 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0/* f0 */
    /*      -------------------------------         */
    /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
};

/*
* opcodes we'll probably never support:
* 6c-6d, e4-e5, ec-ed - in
* 6e-6f, e6-e7, ee-ef - out
* cc, cd - int3, int
* cf - iret
* d6 - illegal instruction
* f1 - int1/icebp
* f4 - hlt
* fa, fb - cli, sti
* 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
*
* invalid opcodes in 64-bit mode:
* 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
*
* 63 - we support this opcode in x86_64 but not in i386.
* opcodes we may need to refine support for:
* 0f - 2-byte instructions: For many of these instructions, the validity
* depends on the prefix and/or the reg field.  On such instructions, we
* just consider the opcode combination valid if it corresponds to any
* valid instruction.
* 8f - Group 1 - only reg = 0 is OK
* c6-c7 - Group 11 - only reg = 0 is OK
* d9-df - fpu insns with some illegal encodings
* f2, f3 - repnz, repz prefixes.  These are also the first byte for
* certain floating-point instructions, such as addsd.
* fe - Group 4 - only reg = 0 or 1 is OK
* ff - Group 5 - only reg = 0-6 is OK
*
* others -- Do we need to support these?
* 0f - (floating-point?) prefetch instructions
* 07, 17, 1f - pop es, pop ss, pop ds
* 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
*     but 64 and 65 (fs: and gs:) seem to be used, so we support them
* 67 - addr16 prefix
* ce - into
* f0 - lock prefix
*/

/*
* TODO:
* - Where necessary, examine the modrm byte and allow only valid instructions
* in the different Groups and fpu instructions.
* - Note: If we go past the first byte, do we need to verify that
* subsequent bytes were actually there, rather than off the last page?
* - Be clearer about which instructions we'll never probe.
*/

/*
* Return 1 if this is a legacy instruction prefix we support, -1 if
* it's one we don't support, or 0 if it's not a prefix at all.
*/
static inline int check_legacy_prefix(u8 byte)
{
    switch (byte) {
    case 0x26:
    case 0x2e:
    case 0x36:
    case 0x3e:
    case 0xf0:
        return -1;
    case 0x64:
    case 0x65:
    case 0x66:
    case 0x67:
    case 0xf2:
    case 0xf3:
        return 1;
    default:
        return 0;
    }
}

static void report_bad_1byte_opcode(int mode, uprobe_opcode_t op)
{
    printk(KERN_ERR "In %d-bit apps, "
        "uprobes does not currently support probing "
        "instructions whose first byte is 0x%2.2x\n", mode, op);
}

static void report_bad_2byte_opcode(uprobe_opcode_t op)
{
    printk(KERN_ERR "uprobes does not currently support probing "
        "instructions with the 2-byte opcode 0x0f 0x%2.2x\n", op);
}

static void report_bad_opcode_prefix(uprobe_opcode_t op, uprobe_opcode_t prefix)
{
    printk(KERN_ERR "uprobes does not currently support probing "
        "instructions whose first byte is 0x%2.2x "
        "with a prefix 0x%2.2x\n", op, prefix);
}

/* Figure out how uprobe_post_ssout should perform ip fixup. */
static int setup_uprobe_post_ssout(struct uprobe_probept *ppt,
        uprobe_opcode_t *insn)
{
    /*
     * Some of these require special treatment, but we don't know what to
     * do with arbitrary prefixes, so we refuse to probe them.
     */
    int prefix_ok = 0;
    switch (*insn) {
    case 0xc3:        /* ret */
        if ((insn - ppt->insn == 1) &&
            (*ppt->insn == 0xf3 || *ppt->insn == 0xf2))
            /*
             * "rep ret" is an AMD kludge that's used by GCC,
             * so we need to treat it like a normal ret.
             */
            prefix_ok = 1;
    case 0xcb:        /* more ret/lret */
    case 0xc2:
    case 0xca:
        /* rip is correct */
        ppt->arch_info.flags |= UPFIX_ABS_IP;
        break;
    case 0xe8:        /* call relative - Fix return addr */
        ppt->arch_info.flags |= UPFIX_RETURN;
        break;
    case 0x9a:        /* call absolute - Fix return addr */
        ppt->arch_info.flags |= UPFIX_RETURN | UPFIX_ABS_IP;
        break;
    case 0xff:
        if ((insn[1] & 0x30) == 0x10) {
            /* call absolute, indirect */
            /* Fix return addr; rip is correct. */
            ppt->arch_info.flags |= UPFIX_ABS_IP | UPFIX_RETURN;
        } else if ((insn[1] & 0x31) == 0x20 ||    /* jmp near, absolute indirect */
               (insn[1] & 0x31) == 0x21) {    /* jmp far, absolute indirect */
            /* rip is correct. */
            ppt->arch_info.flags |= UPFIX_ABS_IP;
        }
        break;
    case 0xea:        /* jmp absolute -- rip is correct */
        ppt->arch_info.flags |= UPFIX_ABS_IP;
        break;
    default:
        /* Assuming that normal ip-fixup is ok for other prefixed opcodes. */
        prefix_ok = 1;
        break;
    }

    if (!prefix_ok && insn != ppt->insn) {
        report_bad_opcode_prefix(*insn, *ppt->insn);
        return -EPERM;
    }

    return 0;
}

static int validate_insn_32bits(struct uprobe_probept *ppt)
{
    uprobe_opcode_t *insn = ppt->insn;
    int pfx, ret;

    /* Skip good instruction prefixes; reject "bad" ones. */
    while ((pfx = check_legacy_prefix(insn[0])) == 1)
        insn++;
    if (pfx < 0) {
        report_bad_1byte_opcode(32, insn[0]);
        return -EPERM;
    }
    if ((ret = setup_uprobe_post_ssout(ppt, insn)) != 0)
        return ret;
    if (test_bit(insn[0], (unsigned long*)good_insns_32))
        return 0;
    if (insn[0] == 0x0f) {
        if (test_bit(insn[1], (unsigned long*)good_2byte_insns))
            return 0;
        report_bad_2byte_opcode(insn[1]);
    } else
        report_bad_1byte_opcode(32, insn[0]);
    return -EPERM;
}

static int validate_insn_64bits(struct uprobe_probept *ppt)
{
    uprobe_opcode_t *insn = ppt->insn;
    int pfx, ret;

    /* Skip good instruction prefixes; reject "bad" ones. */
    while ((pfx = check_legacy_prefix(insn[0])) == 1)
        insn++;
    if (pfx < 0) {
        report_bad_1byte_opcode(64, insn[0]);
        return -EPERM;
    }
    /* Skip REX prefix. */
    if ((insn[0] & 0xf0) == 0x40)
        insn++;
    if ((ret = setup_uprobe_post_ssout(ppt, insn)) != 0)
        return ret;
    if (test_bit(insn[0], (unsigned long*)good_insns_64))
        return 0;
    if (insn[0] == 0x0f) {
        if (test_bit(insn[1], (unsigned long*)good_2byte_insns))
            return 0;
        report_bad_2byte_opcode(insn[1]);
    } else
        report_bad_1byte_opcode(64, insn[0]);
    return -EPERM;
}

#ifdef CONFIG_X86_64
static int handle_riprel_insn(struct uprobe_probept *ppt);
#endif

static
int arch_validate_probed_insn(struct uprobe_probept *ppt,
                        struct task_struct *tsk)
{
    int ret;

    ppt->arch_info.flags = 0x0;
#ifdef CONFIG_X86_64
    ppt->arch_info.rip_target_address = 0x0;
#endif

    if (is_32bit_app(tsk))
        return validate_insn_32bits(ppt);
    if ((ret = validate_insn_64bits(ppt)) != 0)
        return ret;
#ifdef CONFIG_X86_64
    (void) handle_riprel_insn(ppt);
#endif
    return 0;
}

#ifdef CONFIG_X86_64
/*
* Returns 0 if the indicated instruction has no immediate operand
* and/or can't use rip-relative addressing.  Otherwise returns
* the size of the immediate operand in the instruction.  (Note that
* for instructions such as "movq $7,xxxx(%rip)" the immediate-operand
* field is 4 bytes, even though 8 bytes are stored.)
*/
static int immediate_operand_size(u8 opcode1, u8 opcode2, u8 reg,
                        int operand_size_prefix)
{
    switch (opcode1) {
    case 0x6b:    /* imul immed,mem,reg */
    case 0x80:    /* Group 1 */
    case 0x83:    /* Group 1 */
    case 0xc0:    /* Group 2 */
    case 0xc1:    /* Group 2 */
    case 0xc6:    /* Group 11 */
        return 1;
    case 0x69:    /* imul immed,mem,reg */
    case 0x81:    /* Group 1 */
    case 0xc7:    /* Group 11 */
        return (operand_size_prefix ? 2 : 4);
    case 0xf6:    /* Group 3, reg field == 0 or 1 */
        return (reg > 1 ? 0 : 1);
    case 0xf7:    /* Group 3, reg field == 0 or 1 */
        if (reg > 1)
            return 0;
        return (operand_size_prefix ? 2 : 4);
    case 0x0f:
        /* 2-byte opcodes */
        switch (opcode2) {
        /*
         * Note: 0x71-73 (Groups 12-14) have immediate operands,
         * but not memory operands.
         */
        case 0x70:    /* pshuf* immed,mem,reg */
        case 0xa4:    /* shld immed,reg,mem */
        case 0xac:    /* shrd immed,reg,mem */
        case 0xc2:    /* cmpps or cmppd */
        case 0xc4:    /* pinsrw */
        case 0xc5:    /* pextrw */
        case 0xc6:    /* shufps or shufpd */
        case 0x0f:    /* 3DNow extensions */
            return 1;
        default:
            return 0;
        }
    }
    return 0;
}

/*
* TODO: These tables are common for kprobes and uprobes and can be moved
* to a common place.
*/
static const volatile u64 onebyte_has_modrm[256 / 64] = {
    /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
    /*      -------------------------------         */
    W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
    W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
    W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
    W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
    W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
    W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
    W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
    W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
    W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
    W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
    W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
    W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
    W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
    W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
    W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
    W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1/* f0 */
    /*      -------------------------------         */
    /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
};
static const volatile u64 twobyte_has_modrm[256 / 64] = {
    /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
    /*      -------------------------------         */
    W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
    W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
    W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
    W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
    W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
    W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
    W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
    W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
    W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
    W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
    W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
    W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
    W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
    W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
    W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
    W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0/* ff */
    /*      -------------------------------         */
    /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
};

/*
* If pp->insn doesn't use rip-relative addressing, return 0.  Otherwise,
* rewrite the instruction so that it accesses its memory operand
* indirectly through a scratch register.  Set flags and rip_target_address
* in ppt->arch_info accordingly.  (The contents of the scratch register
* will be saved before we single-step the modified instruction, and
* restored afterward.)  Return 1.
*
* We do this because a rip-relative instruction can access only a
* relatively small area (+/- 2 GB from the instruction), and the SSOL
* area typically lies beyond that area.  At least for instructions
* that store to memory, we can't single-step the original instruction
* and "fix things up" later, because the misdirected store could be
* disastrous.
*
* Some useful facts about rip-relative instructions:
* - There's always a modrm byte.
* - There's never a SIB byte.
* - The offset is always 4 bytes.
*/
static int handle_riprel_insn(struct uprobe_probept *ppt)
{
    u8 *insn = (u8*) ppt->insn;
    u8 opcode1, opcode2, modrm, reg;
    int need_modrm;
    int operand_size_prefix = 0;
    int immed_size, instruction_size;

    /*
     * Skip legacy instruction prefixes.  Some of these we don't
     * support (yet), but here we pretend to support all of them.
     * Skip the REX prefix, if any.
     */
    while (check_legacy_prefix(*insn)) {
        if (*insn == 0x66)
            operand_size_prefix = 1;
        insn++;
    }
    if ((*insn & 0xf0) == 0x40)
        insn++;

    opcode1 = *insn;
    if (opcode1 == 0x0f) {    /* Two-byte opcode.  */
        opcode2 = *++insn;
        need_modrm = test_bit(opcode2, (unsigned long*)twobyte_has_modrm);
    } else {        /* One-byte opcode.  */
        opcode2 = 0x0;
        need_modrm = test_bit(opcode1, (unsigned long*)onebyte_has_modrm);
    }

    if (!need_modrm)
        return 0;

    modrm = *++insn;
    /*
     * For rip-relative instructions, the mod field (top 2 bits)
     * is zero and the r/m field (bottom 3 bits) is 0x5.
     */
    if ((modrm & 0xc7) != 0x5)
        return 0;

    /*
     * We have a rip-relative instruction.  insn points at the
     * modrm byte.  The next 4 bytes are the offset. Beyond the
     * offset, for some instructions, is the immediate operand.
     */
    reg = (modrm >> 3) & 0x7;
    immed_size = immediate_operand_size(opcode1, opcode2, reg,
                        operand_size_prefix);
    instruction_size =
        (insn - (u8*) ppt->insn)    /* prefixes + opcodes */
        + 1            /* modrm byte */
        + 4            /* offset */
        + immed_size;        /* immediate field */
#ifdef DEBUG_UPROBES_RIP
{
    int i;
    BUG_ON(instruction_size > 15);
    printk(KERN_INFO "Munging rip-relative insn:");
    for (i = 0; i < instruction_size; i++)
        printk(" %2.2x", ppt->insn[i]);
    printk("\n");
}
#endif

    /*
     * Convert from rip-relative addressing to indirect addressing
     * via a scratch register.  Change the r/m field from 0x5 (%rip)
     * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
     */
    if (reg == 0) {
        /*
         * The register operand (if any) is either the A register
         * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
         * REX prefix) %r8.  In any case, we know the C register
         * is NOT the register operand, so we use %rcx (register
         * #1) for the scratch register.
         */
        ppt->arch_info.flags |= UPFIX_RIP_RCX;
        /* Change modrm from 00 000 101 to 00 000 001. */
        *insn = 0x1;
    } else {
        /* Use %rax (register #0) for the scratch register. */
        ppt->arch_info.flags |= UPFIX_RIP_RAX;
        /* Change modrm from 00 xxx 101 to 00 xxx 000 */
        *insn = (reg << 3);
    }

    /* Target address = address of next instruction + (signed) offset */
    insn++;
    ppt->arch_info.rip_target_address =
            (long) ppt->vaddr + instruction_size + *((s32*)insn);
    if (immed_size)
        memmove(insn, insn+4, immed_size);
#ifdef DEBUG_UPROBES_RIP
{
    int i;
    printk(KERN_INFO "Munged rip-relative insn: ");
    for (i = 0; i < instruction_size-4; i++)
        printk(" %2.2x", ppt->insn[i]);
    printk("\n");
    printk(KERN_INFO "Target address = %#lx\n",
                ppt->arch_info.rip_target_address);
}
#endif
    return 1;
}
#endif

/*
* Get an instruction slot from the process's SSOL area, containing the
* instruction at ppt's probepoint.  Point the rip at that slot, in
* preparation for single-stepping out of line.
*
* If we're emulating a rip-relative instruction, save the contents
* of the scratch register and store the target address in that register.
*/
static
void uprobe_pre_ssout(struct uprobe_task *utask, struct uprobe_probept *ppt,
        struct pt_regs *regs)
{
    struct uprobe_ssol_slot *slot;

    slot = uprobe_get_insn_slot(ppt);
    if (!slot) {
        utask->doomed = 1;
        return;
    }

    regs->ip = (long)slot->insn;
    utask->singlestep_addr = regs->ip;
#ifdef CONFIG_X86_64
    if (ppt->arch_info.flags & UPFIX_RIP_RAX) {
        utask->arch_info.saved_scratch_register = regs->ax;
        regs->ax = ppt->arch_info.rip_target_address;
    } else if (ppt->arch_info.flags & UPFIX_RIP_RCX) {
        utask->arch_info.saved_scratch_register = regs->cx;
        regs->cx = ppt->arch_info.rip_target_address;
    }
#endif
}

/*
* Called by uprobe_post_ssout() to adjust the return address
* pushed by a call instruction executed out of line.
*/
static void adjust_ret_addr(unsigned long rsp, long correction,
                    struct uprobe_task *utask)
{
    unsigned long nleft;
    if (is_32bit_app(current)) {
        s32 ra;
        nleft = copy_from_user(&ra, (const void __user *) rsp, 4);
        if (unlikely(nleft != 0))
            goto fail;
        ra += (s32) correction;
        nleft = copy_to_user((void __user *) rsp, &ra, 4);
        if (unlikely(nleft != 0))
            goto fail;
    } else {
        s64 ra;
        nleft = copy_from_user(&ra, (const void __user *) rsp, 8);
        if (unlikely(nleft != 0))
            goto fail;
        ra += correction;
        nleft = copy_to_user((void __user *) rsp, &ra, 8);
        if (unlikely(nleft != 0))
            goto fail;
    }
    return;

fail:
    printk(KERN_ERR
        "uprobes: Failed to adjust return address after"
        " single-stepping call instruction;"
        " pid=%d, rsp=%#lx\n", current->pid, rsp);
    utask->doomed = 1;
}

/*
* Called after single-stepping.  ppt->vaddr is the address of the
* instruction whose first byte has been replaced by the "int3"
* instruction.  To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction.  The address of this
* copy is utask->singlestep_addr.
*
* This function prepares to return from the post-single-step
* trap.  We have to fix things up as follows:
*
* 0) Typically, the new rip is relative to the copied instruction.  We
* need to make it relative to the original instruction.  Exceptions are
* return instructions and absolute or indirect jump or call instructions.
*
* 1) If the single-stepped instruction was a call, the return address
* that is atop the stack is the address following the copied instruction.
* We need to make it the address following the original instruction.
*
* 2) If the original instruction was a rip-relative instruction such as
* "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
* instruction using a scratch register -- e.g., "movl %edx,(%rax)".
* We need to restore the contents of the scratch register and adjust
* the rip, keeping in mind that the instruction we executed is 4 bytes
* shorter than the original instruction (since we squeezed out the offset
* field).
*/
static
void uprobe_post_ssout(struct uprobe_task *utask, struct uprobe_probept *ppt,
        struct pt_regs *regs)
{
    unsigned long copy_ip = utask->singlestep_addr;
    unsigned long orig_ip = ppt->vaddr;
    long correction = (long) (orig_ip - copy_ip);
    unsigned long flags = ppt->arch_info.flags;

    up_read(&ppt->slot->rwsem);

#ifdef CONFIG_X86_64
    if (flags & (UPFIX_RIP_RAX | UPFIX_RIP_RCX)) {
        if (flags & UPFIX_RIP_RAX)
            regs->ax = utask->arch_info.saved_scratch_register;
        else
            regs->cx = utask->arch_info.saved_scratch_register;
        /*
         * The original instruction includes a displacement, and so
         * is 4 bytes longer than what we've just single-stepped.
         * Fall through to handle stuff like "jmpq *...(%rip)" and
         * "callq *...(%rip)".
         */
        correction += 4;
    }
#endif

    if (flags & UPFIX_RETURN)
        adjust_ret_addr(regs->sp, correction, utask);

    if (!(flags & UPFIX_ABS_IP))
        regs->ip += correction;
}

/*
* Replace the return address with the trampoline address.  Returns
* the original return address.
*/
static
unsigned long arch_hijack_uret_addr(unsigned long trampoline_address,
            struct pt_regs *regs, struct uprobe_task *utask)
{
    int nleft;
    unsigned long orig_ret_addr = 0/* clear high bits for 32-bit apps */
    size_t rasize;

    if (is_32bit_app(current))
        rasize = 4;
    else
        rasize = 8;
    nleft = copy_from_user(&orig_ret_addr, (const void __user *) regs->sp,
        rasize);
    if (unlikely(nleft != 0))
        return 0;
    if (orig_ret_addr == trampoline_address)
        /*
         * There's another uretprobe on this function, and it was
         * processed first, so the return address has already
         * been hijacked.
         */
        return orig_ret_addr;

    nleft = copy_to_user((void __user *) regs->sp, &trampoline_address,
        rasize);
    if (unlikely(nleft != 0)) {
        if (nleft != rasize) {
            printk(KERN_ERR "uretprobe_entry_handler: "
                "return address partially clobbered -- "
                "pid=%d, %%sp=%#lx, %%ip=%#lx\n",
                current->pid, regs->sp, regs->ip);
            utask->doomed = 1;
        } // else nothing written, so no harm
        return 0;
    }
    return orig_ret_addr;
}

/* Check if instruction is nop and return true. */
static int uprobe_emulate_insn(struct pt_regs *regs,
                        struct uprobe_probept *ppt)
{
    uprobe_opcode_t *insn = ppt->insn;

    if (insn[0] == 0x90)
        /* regs->ip already points to the insn after the nop/int3. */
        return 1;

    /* TODO: add multibyte nop instructions */
    /* For multibyte nop instructions, we need to set ip accordingly. */
    return 0;
}