src/lj_emit_arm.h - luajit-2.0-src

Global variables defined

Data types defined

Functions defined

Macros defined

Source code

  1. /*
  2. ** ARM instruction emitter.
  3. ** Copyright (C) 2005-2015 Mike Pall. See Copyright Notice in luajit.h
  4. */

  5. /* -- Constant encoding --------------------------------------------------- */

  6. static uint8_t emit_invai[16] = {
  7.   /* AND */ (ARMI_AND^ARMI_BIC) >> 21,
  8.   /* EOR */ 0,
  9.   /* SUB */ (ARMI_SUB^ARMI_ADD) >> 21,
  10.   /* RSB */ 0,
  11.   /* ADD */ (ARMI_ADD^ARMI_SUB) >> 21,
  12.   /* ADC */ (ARMI_ADC^ARMI_SBC) >> 21,
  13.   /* SBC */ (ARMI_SBC^ARMI_ADC) >> 21,
  14.   /* RSC */ 0,
  15.   /* TST */ 0,
  16.   /* TEQ */ 0,
  17.   /* CMP */ (ARMI_CMP^ARMI_CMN) >> 21,
  18.   /* CMN */ (ARMI_CMN^ARMI_CMP) >> 21,
  19.   /* ORR */ 0,
  20.   /* MOV */ (ARMI_MOV^ARMI_MVN) >> 21,
  21.   /* BIC */ (ARMI_BIC^ARMI_AND) >> 21,
  22.   /* MVN */ (ARMI_MVN^ARMI_MOV) >> 21
  23. };

  24. /* Encode constant in K12 format for data processing instructions. */
  25. static uint32_t emit_isk12(ARMIns ai, int32_t n)
  26. {
  27.   uint32_t invai, i, m = (uint32_t)n;
  28.   /* K12: unsigned 8 bit value, rotated in steps of two bits. */
  29.   for (i = 0; i < 4096; i += 256, m = lj_rol(m, 2))
  30.     if (m <= 255) return ARMI_K12|m|i;
  31.   /* Otherwise try negation/complement with the inverse instruction. */
  32.   invai = emit_invai[((ai >> 21) & 15)];
  33.   if (!invai) return 0/* Failed. No inverse instruction. */
  34.   m = ~(uint32_t)n;
  35.   if (invai == ((ARMI_SUB^ARMI_ADD) >> 21) ||
  36.       invai == (ARMI_CMP^ARMI_CMN) >> 21) m++;
  37.   for (i = 0; i < 4096; i += 256, m = lj_rol(m, 2))
  38.     if (m <= 255) return ARMI_K12|(invai<<21)|m|i;
  39.   return 0/* Failed. */
  40. }

  41. /* -- Emit basic instructions --------------------------------------------- */

  42. static void emit_dnm(ASMState *as, ARMIns ai, Reg rd, Reg rn, Reg rm)
  43. {
  44.   *--as->mcp = ai | ARMF_D(rd) | ARMF_N(rn) | ARMF_M(rm);
  45. }

  46. static void emit_dm(ASMState *as, ARMIns ai, Reg rd, Reg rm)
  47. {
  48.   *--as->mcp = ai | ARMF_D(rd) | ARMF_M(rm);
  49. }

  50. static void emit_dn(ASMState *as, ARMIns ai, Reg rd, Reg rn)
  51. {
  52.   *--as->mcp = ai | ARMF_D(rd) | ARMF_N(rn);
  53. }

  54. static void emit_nm(ASMState *as, ARMIns ai, Reg rn, Reg rm)
  55. {
  56.   *--as->mcp = ai | ARMF_N(rn) | ARMF_M(rm);
  57. }

  58. static void emit_d(ASMState *as, ARMIns ai, Reg rd)
  59. {
  60.   *--as->mcp = ai | ARMF_D(rd);
  61. }

  62. static void emit_n(ASMState *as, ARMIns ai, Reg rn)
  63. {
  64.   *--as->mcp = ai | ARMF_N(rn);
  65. }

  66. static void emit_m(ASMState *as, ARMIns ai, Reg rm)
  67. {
  68.   *--as->mcp = ai | ARMF_M(rm);
  69. }

  70. static void emit_lsox(ASMState *as, ARMIns ai, Reg rd, Reg rn, int32_t ofs)
  71. {
  72.   lua_assert(ofs >= -255 && ofs <= 255);
  73.   if (ofs < 0) ofs = -ofs; else ai |= ARMI_LS_U;
  74.   *--as->mcp = ai | ARMI_LS_P | ARMI_LSX_I | ARMF_D(rd) | ARMF_N(rn) |
  75.                ((ofs & 0xf0) << 4) | (ofs & 0x0f);
  76. }

  77. static void emit_lso(ASMState *as, ARMIns ai, Reg rd, Reg rn, int32_t ofs)
  78. {
  79.   lua_assert(ofs >= -4095 && ofs <= 4095);
  80.   /* Combine LDR/STR pairs to LDRD/STRD. */
  81.   if (*as->mcp == (ai|ARMI_LS_P|ARMI_LS_U|ARMF_D(rd^1)|ARMF_N(rn)|(ofs^4)) &&
  82.       (ai & ~(ARMI_LDR^ARMI_STR)) == ARMI_STR && rd != rn &&
  83.       (uint32_t)ofs <= 252 && !(ofs & 3) && !((rd ^ (ofs >>2)) & 1) &&
  84.       as->mcp != as->mcloop) {
  85.     as->mcp++;
  86.     emit_lsox(as, ai == ARMI_LDR ? ARMI_LDRD : ARMI_STRD, rd&~1, rn, ofs&~4);
  87.     return;
  88.   }
  89.   if (ofs < 0) ofs = -ofs; else ai |= ARMI_LS_U;
  90.   *--as->mcp = ai | ARMI_LS_P | ARMF_D(rd) | ARMF_N(rn) | ofs;
  91. }

  92. #if !LJ_SOFTFP
  93. static void emit_vlso(ASMState *as, ARMIns ai, Reg rd, Reg rn, int32_t ofs)
  94. {
  95.   lua_assert(ofs >= -1020 && ofs <= 1020 && (ofs&3) == 0);
  96.   if (ofs < 0) ofs = -ofs; else ai |= ARMI_LS_U;
  97.   *--as->mcp = ai | ARMI_LS_P | ARMF_D(rd & 15) | ARMF_N(rn) | (ofs >> 2);
  98. }
  99. #endif

  100. /* -- Emit loads/stores --------------------------------------------------- */

  101. /* Prefer spills of BASE/L. */
  102. #define emit_canremat(ref)        ((ref) < ASMREF_L)

  103. /* Try to find a one step delta relative to another constant. */
  104. static int emit_kdelta1(ASMState *as, Reg d, int32_t i)
  105. {
  106.   RegSet work = ~as->freeset & RSET_GPR;
  107.   while (work) {
  108.     Reg r = rset_picktop(work);
  109.     IRRef ref = regcost_ref(as->cost[r]);
  110.     lua_assert(r != d);
  111.     if (emit_canremat(ref)) {
  112.       int32_t delta = i - (ra_iskref(ref) ? ra_krefk(as, ref) : IR(ref)->i);
  113.       uint32_t k = emit_isk12(ARMI_ADD, delta);
  114.       if (k) {
  115.         if (k == ARMI_K12)
  116.           emit_dm(as, ARMI_MOV, d, r);
  117.         else
  118.           emit_dn(as, ARMI_ADD^k, d, r);
  119.         return 1;
  120.       }
  121.     }
  122.     rset_clear(work, r);
  123.   }
  124.   return 0/* Failed. */
  125. }

  126. /* Try to find a two step delta relative to another constant. */
  127. static int emit_kdelta2(ASMState *as, Reg d, int32_t i)
  128. {
  129.   RegSet work = ~as->freeset & RSET_GPR;
  130.   while (work) {
  131.     Reg r = rset_picktop(work);
  132.     IRRef ref = regcost_ref(as->cost[r]);
  133.     lua_assert(r != d);
  134.     if (emit_canremat(ref)) {
  135.       int32_t other = ra_iskref(ref) ? ra_krefk(as, ref) : IR(ref)->i;
  136.       if (other) {
  137.         int32_t delta = i - other;
  138.         uint32_t sh, inv = 0, k2, k;
  139.         if (delta < 0) { delta = -delta; inv = ARMI_ADD^ARMI_SUB; }
  140.         sh = lj_ffs(delta) & ~1;
  141.         k2 = emit_isk12(0, delta & (255 << sh));
  142.         k = emit_isk12(0, delta & ~(255 << sh));
  143.         if (k) {
  144.           emit_dn(as, ARMI_ADD^k2^inv, d, d);
  145.           emit_dn(as, ARMI_ADD^k^inv, d, r);
  146.           return 1;
  147.         }
  148.       }
  149.     }
  150.     rset_clear(work, r);
  151.   }
  152.   return 0/* Failed. */
  153. }

  154. /* Load a 32 bit constant into a GPR. */
  155. static void emit_loadi(ASMState *as, Reg r, int32_t i)
  156. {
  157.   uint32_t k = emit_isk12(ARMI_MOV, i);
  158.   lua_assert(rset_test(as->freeset, r) || r == RID_TMP);
  159.   if (k) {
  160.     /* Standard K12 constant. */
  161.     emit_d(as, ARMI_MOV^k, r);
  162.   } else if ((as->flags & JIT_F_ARMV6T2) && (uint32_t)i < 0x00010000u) {
  163.     /* 16 bit loword constant for ARMv6T2. */
  164.     emit_d(as, ARMI_MOVW|(i & 0x0fff)|((i & 0xf000)<<4), r);
  165.   } else if (emit_kdelta1(as, r, i)) {
  166.     /* One step delta relative to another constant. */
  167.   } else if ((as->flags & JIT_F_ARMV6T2)) {
  168.     /* 32 bit hiword/loword constant for ARMv6T2. */
  169.     emit_d(as, ARMI_MOVT|((i>>16) & 0x0fff)|(((i>>16) & 0xf000)<<4), r);
  170.     emit_d(as, ARMI_MOVW|(i & 0x0fff)|((i & 0xf000)<<4), r);
  171.   } else if (emit_kdelta2(as, r, i)) {
  172.     /* Two step delta relative to another constant. */
  173.   } else {
  174.     /* Otherwise construct the constant with up to 4 instructions. */
  175.     /* NYI: use mvn+bic, use pc-relative loads. */
  176.     for (;;) {
  177.       uint32_t sh = lj_ffs(i) & ~1;
  178.       int32_t m = i & (255 << sh);
  179.       i &= ~(255 << sh);
  180.       if (i == 0) {
  181.         emit_d(as, ARMI_MOV ^ emit_isk12(0, m), r);
  182.         break;
  183.       }
  184.       emit_dn(as, ARMI_ORR ^ emit_isk12(0, m), r, r);
  185.     }
  186.   }
  187. }

  188. #define emit_loada(as, r, addr)                emit_loadi(as, (r), i32ptr((addr)))

  189. static Reg ra_allock(ASMState *as, int32_t k, RegSet allow);

  190. /* Get/set from constant pointer. */
  191. static void emit_lsptr(ASMState *as, ARMIns ai, Reg r, void *p)
  192. {
  193.   int32_t i = i32ptr(p);
  194.   emit_lso(as, ai, r, ra_allock(as, (i & ~4095), rset_exclude(RSET_GPR, r)),
  195.            (i & 4095));
  196. }

  197. #if !LJ_SOFTFP
  198. /* Load a number constant into an FPR. */
  199. static void emit_loadn(ASMState *as, Reg r, cTValue *tv)
  200. {
  201.   int32_t i;
  202.   if ((as->flags & JIT_F_VFPV3) && !tv->u32.lo) {
  203.     uint32_t hi = tv->u32.hi;
  204.     uint32_t b = ((hi >> 22) & 0x1ff);
  205.     if (!(hi & 0xffff) && (b == 0x100 || b == 0x0ff)) {
  206.       *--as->mcp = ARMI_VMOVI_D | ARMF_D(r & 15) |
  207.                    ((tv->u32.hi >> 12) & 0x00080000) |
  208.                    ((tv->u32.hi >> 4) & 0x00070000) |
  209.                    ((tv->u32.hi >> 16) & 0x0000000f);
  210.       return;
  211.     }
  212.   }
  213.   i = i32ptr(tv);
  214.   emit_vlso(as, ARMI_VLDR_D, r,
  215.             ra_allock(as, (i & ~1020), RSET_GPR), (i & 1020));
  216. }
  217. #endif

  218. /* Get/set global_State fields. */
  219. #define emit_getgl(as, r, field) \
  220.   emit_lsptr(as, ARMI_LDR, (r), (void *)&J2G(as->J)->field)
  221. #define emit_setgl(as, r, field) \
  222.   emit_lsptr(as, ARMI_STR, (r), (void *)&J2G(as->J)->field)

  223. /* Trace number is determined from pc of exit instruction. */
  224. #define emit_setvmstate(as, i)                UNUSED(i)

  225. /* -- Emit control-flow instructions -------------------------------------- */

  226. /* Label for internal jumps. */
  227. typedef MCode *MCLabel;

  228. /* Return label pointing to current PC. */
  229. #define emit_label(as)                ((as)->mcp)

  230. static void emit_branch(ASMState *as, ARMIns ai, MCode *target)
  231. {
  232.   MCode *p = as->mcp;
  233.   ptrdiff_t delta = (target - p) - 1;
  234.   lua_assert(((delta + 0x00800000) >> 24) == 0);
  235.   *--p = ai | ((uint32_t)delta & 0x00ffffffu);
  236.   as->mcp = p;
  237. }

  238. #define emit_jmp(as, target) emit_branch(as, ARMI_B, (target))

  239. static void emit_call(ASMState *as, void *target)
  240. {
  241.   MCode *p = --as->mcp;
  242.   ptrdiff_t delta = ((char *)target - (char *)p) - 8;
  243.   if ((((delta>>2) + 0x00800000) >> 24) == 0) {
  244.     if ((delta & 1))
  245.       *p = ARMI_BLX | ((uint32_t)(delta>>2) & 0x00ffffffu) | ((delta&2) << 27);
  246.     else
  247.       *p = ARMI_BL | ((uint32_t)(delta>>2) & 0x00ffffffu);
  248.   } else/* Target out of range: need indirect call. But don't use R0-R3. */
  249.     Reg r = ra_allock(as, i32ptr(target), RSET_RANGE(RID_R4, RID_R12+1));
  250.     *p = ARMI_BLXr | ARMF_M(r);
  251.   }
  252. }

  253. /* -- Emit generic operations --------------------------------------------- */

  254. /* Generic move between two regs. */
  255. static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src)
  256. {
  257. #if LJ_SOFTFP
  258.   lua_assert(!irt_isnum(ir->t)); UNUSED(ir);
  259. #else
  260.   if (dst >= RID_MAX_GPR) {
  261.     emit_dm(as, irt_isnum(ir->t) ? ARMI_VMOV_D : ARMI_VMOV_S,
  262.             (dst & 15), (src & 15));
  263.     return;
  264.   }
  265. #endif
  266.   if (as->mcp != as->mcloop) {  /* Swap early registers for loads/stores. */
  267.     MCode ins = *as->mcp, swp = (src^dst);
  268.     if ((ins & 0x0c000000) == 0x04000000 && (ins & 0x02000010) != 0x02000010) {
  269.       if (!((ins ^ (dst << 16)) & 0x000f0000))
  270.         *as->mcp = ins ^ (swp << 16);  /* Swap N in load/store. */
  271.       if (!(ins & 0x00100000) && !((ins ^ (dst << 12)) & 0x0000f000))
  272.         *as->mcp = ins ^ (swp << 12);  /* Swap D in store. */
  273.     }
  274.   }
  275.   emit_dm(as, ARMI_MOV, dst, src);
  276. }

  277. /* Generic load of register with base and (small) offset address. */
  278. static void emit_loadofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs)
  279. {
  280. #if LJ_SOFTFP
  281.   lua_assert(!irt_isnum(ir->t)); UNUSED(ir);
  282. #else
  283.   if (r >= RID_MAX_GPR)
  284.     emit_vlso(as, irt_isnum(ir->t) ? ARMI_VLDR_D : ARMI_VLDR_S, r, base, ofs);
  285.   else
  286. #endif
  287.     emit_lso(as, ARMI_LDR, r, base, ofs);
  288. }

  289. /* Generic store of register with base and (small) offset address. */
  290. static void emit_storeofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs)
  291. {
  292. #if LJ_SOFTFP
  293.   lua_assert(!irt_isnum(ir->t)); UNUSED(ir);
  294. #else
  295.   if (r >= RID_MAX_GPR)
  296.     emit_vlso(as, irt_isnum(ir->t) ? ARMI_VSTR_D : ARMI_VSTR_S, r, base, ofs);
  297.   else
  298. #endif
  299.     emit_lso(as, ARMI_STR, r, base, ofs);
  300. }

  301. /* Emit an arithmetic/logic operation with a constant operand. */
  302. static void emit_opk(ASMState *as, ARMIns ai, Reg dest, Reg src,
  303.                      int32_t i, RegSet allow)
  304. {
  305.   uint32_t k = emit_isk12(ai, i);
  306.   if (k)
  307.     emit_dn(as, ai^k, dest, src);
  308.   else
  309.     emit_dnm(as, ai, dest, src, ra_allock(as, i, allow));
  310. }

  311. /* Add offset to pointer. */
  312. static void emit_addptr(ASMState *as, Reg r, int32_t ofs)
  313. {
  314.   if (ofs)
  315.     emit_opk(as, ARMI_ADD, r, r, ofs, rset_exclude(RSET_GPR, r));
  316. }

  317. #define emit_spsub(as, ofs)        emit_addptr(as, RID_SP, -(ofs))